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Zusammenfassung

Rydberg-Atome eignen sich in idealer Weise stark korrelierte Quantensysteme zu untersuchen
und sind eine vielversprechende Plattform für die Quanteninformationsverarbeitung. Insbesondere
Rydberg-Atome in optischen Gittern haben ein großes Potenzial um Quanten-Vielteilchensysteme
zu simulieren. Sie bieten neue, aussichtsreiche Eigenschaften wie flexible, isotrope oder anisotrope,
langreichweitige Wechselwirkungspotentiale; die Möglichkeit effektive Wechselwirkungspotentiale
mit Laserparametern zu gestalten; schnelle und präzise Steuerung des simulierten Hamiltonoperators
und einstellbare und kontrollierbare dissipative Effekte.

Der erste Teil der Dissertation untersucht Mischungen von Rydberg Atomen und polaren Mole-
külen als offene Quantensysteme. Insbesondere präsentieren wir eine Möglichkeit, dreidimensionale
Wechselwirkungspotentiale zwischen Rydberg Atomen und polaren Molekülen zu konstruieren, mit
dem Ziel, generische polare Moleküle direkt zu kühlen. Die Atome dienen als (Niedertemperatur-)
Reservoir sowohl für elastische wie auch für inelastische Stöße mit bemerkenswerten und potenziell
nützlichen Eigenschaften: stark abstoßende langreichweitige Potentiale schützen vor ungewollten in-
elastische Kollisionen auf kurze Entfernung, und sehr große elastische Streuquerschnitte führen zu
schneller Thermalisierung. Darüber hinaus konzipieren wir eine kontrollierte dissipative (inelastisch)
Kollision, bei der ein spontan emittiertes Photon die (kinetische) Energie der Kollisionspartner –
ähnlich wie bei einem ‘Sisyphus-Effekt’ – abtransportiert, wodurch eine erhebliche Menge an Energie
in einer einzigen Kollision entfernt werden kann. Zusätzlich untersuchen wir die Langzeitstabilität
eines Rydberg Gases, wenn Dekohärenzprozesse, wie spontane Emission und Schwarzkörperstrahlung
nicht vernachlässigt werden können und zu starken mechanischen Effekten führen. Im Speziellen un-
tersuchen wir das Zusammenspiel von Laser-Kühlung und Heizdynamik durch Dekohärenz mit Hilfe
von Molekulardynamik-Simulationen.

Ein zweites Thema dieser Arbeit bezieht sich auf die Implementierung von Quantensimulatoren
für verschiedene Quanten-Spin-Modelle mit Rydberg-Atomen und Ionen im speziellen frustrierter
Magnetismus. Wir präsentieren einen Vorschlag zur Implementierung von Quanten-Spin-Eis – ein
paradigmatisches Beispiel ist, wie die Physik der frustrierten Magnete mit Eichtheorien zusammen-
hängt. Das Ziel ist es, mit kalten Rydbergatomen Wechselwirkungen zu entwerfen, die ein vere-
infachtes Modell von Quanten-Spin-Eis auf einem zweidimensionalen Schachbrettgitter realisieren.
Wir entwickeln dafür eine Atomphysik Toolbox, die auf den neuesten experimentellen Fortschritten
aufbaut, und die starke Winkelabhängigkeit der van-der-Waals-Wechselwirkungen zwischen hohen
Drehimpuls Rydberg-Zuständen mit der Möglichkeit stufenartigen Potenziale zu konstruieren kom-
biniert. Dies erlaubt es uns, abelsche Eichtheorien basierend auf verschiedenen Geometrien zu kon-
struieren, die mit den momentanen Experimenten realisiert werden können.





Abstract

Rydberg atoms are a promising platform for quantum information processing with the prospect to
explore the quantum dynamics of strongly-correlated systems. In particular, Rydberg atoms in optical
lattices have a great potential for simulating quantum many-body physics. They offer genuinely new
capabilities including tunable, isotropic or anisotropic long-range interactions, the possibility to shape
the effective interaction potentials using laser parameters, fast and precise control of the simulated
Hamiltonian and the engineering of controlled dissipative effects.

The first part of this thesis is concerned with mixtures of Rydberg atoms and polar molecules as
open quantum systems. In particular, we propose a scheme to engineer three dimensional interaction
potentials between laser-dressed Rydberg atoms and ground state polar molecules in order to achieve
direct cooling of generic polar molecules. The atoms act as a designed (low-temperature) reservoir for
both elastic and inelastic collisions with remarkable and potentially useful properties: strong repulsive
shields protect from inelastic collisions at short range and exceedingly large elastic scattering cross
sections lead to rapid thermalization. Moreover, we discuss a dissipative (inelastic) collision where
a spontaneously emitted photon carries away (kinetic) energy of the collisional partners similar to a
‘collisional Sisyphus’ effect, thus providing a significant energy loss in a single collision. Addition-
ally, the long-time stability of a Rydberg dressed gas is studied, where decoherence processes such
as spontaneous emission and black-body radiation can lead to strong mechanical effects. We inves-
tigate the interplay between laser-cooling and heating dynamics due to decoherence by performing
molecular dynamics simulations.

The second topic of this thesis concerns the implementation of quantum simulators for various
quantum-spin models characterizing frustrated magnets using Rydberg atoms and ions. In particular,
we present a discussion of quantum spin ice, which represents a paradigmatic example on how the
physics of frustrated magnets is related to gauge theories. The goal is to assemble a system of cold
Rydberg atoms and to design interactions that realize a toy model of quantum spin ice on a two-
dimensional checkerboard lattice. We develop an atomic toolbox, building on the recent experimental
advances and combine the strong angular dependence of van der Waals interactions between high
angular momentum Rydberg states with the possibility of designing step-like potentials using ground
state atoms weakly dressed by Rydberg states. This allows us to implement Abelian gauge theories
in a series of geometries, which could be demonstrated within state of the art experiments.





Contents

Zusammenfassung vii

Abstract ix

Contents xi

Chapter 1. General Introduction 1

1.1 The world of quantum optics and ultra cold atoms . . . . . . . . . . . . . . . . . . 1

1.2 Laser excited Rydberg atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Quantum Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I Rydberg atoms and polar molecules as open quantum systems 15

Chapter 2. Publication: Atomic Rydberg Reservoirs for Polar Molecules 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Reservoir engineering and molecular cooling . . . . . . . . . . . . . . . . . . . . 21

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.A Non-adiabatic transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 3. Publication: Driven-dissipative dynamics 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Overview of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Atomic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



xii Contents

3.2.2 Rydberg dressing with a dc electric field . . . . . . . . . . . . . . . . . 32

3.2.3 Rydberg dressing with a ac microwave field . . . . . . . . . . . . . . . 33

3.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Internal level structure and setup . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Master equation dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Hamiltonian dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Single-particle Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Two-particle Hamiltonian: Born-Oppenheimer potentials . . . . . . . . 37

3.4.3 Validity of the 2D treatment . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Laser cooling of dressed Rydberg atoms . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 Quantum jumps and rate equations . . . . . . . . . . . . . . . . . . . . 47

3.6 Dissipative dynamics of dressed Rydberg atoms . . . . . . . . . . . . . . . . . . . 47

3.6.1 Decoherence of a single atom . . . . . . . . . . . . . . . . . . . . . . . 48

3.6.2 Molecular dynamics simulation . . . . . . . . . . . . . . . . . . . . . . 51

3.6.3 Effects of decoherence on the dynamics of many interacting Rydberg atoms 53

3.7 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 4. Cooling and trapping of polar molecules in a bilayer configuration 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 The model and energy transfer rates . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Implementation using Rydberg atoms and polar molecules . . . . . . . . . . . . . 63

4.3.1 Atomic layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Atom-Molecule interaction: . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.3 Atom - molecule bound states . . . . . . . . . . . . . . . . . . . . . . . 67

II Quantum computation with Rydberg ions 69

Chapter 5. Publication: Parallel execution of quantum gates 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Contents xiii

5.2 Setup and idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 A long linear ion crystal . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 Collective modes and mode shaping . . . . . . . . . . . . . . . . . . . 75

5.3.3 Parallel conditional phase gates . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.A Excitation of Rydberg ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.B Calculation of the gate fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

III Quantum many-body physics with Rydberg atoms - anisotropic interactions
involving Rydberg p-states 87

Chapter 6. Publication: Quantum Spin Ice and dimer models with Rydberg atoms 89

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 The quantum ice model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 The configuration space: ice rules and emergent gauge fields . . . . . . 93

6.2.2 Realization, and fine-tuning in d = 2 . . . . . . . . . . . . . . . . . . . 93

6.2.3 Adding quantum dynamics, and quantum order by disorder . . . . . . . 95

6.2.4 Relation between quantum ice, Bose-Hubbard models and dimer models 96

6.3 Quantum ice with Rydberg-dressed atoms: exploiting p-states . . . . . . . . . . . 97

6.3.1 Single-particle Hamiltonian on a bi-partite lattice . . . . . . . . . . . . . 97

6.3.2 Interactions between p-states . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.3 Soft-core potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.4 Explicit numbers and discussion of imperfections . . . . . . . . . . . . 105

6.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.1 General definitions and conventions . . . . . . . . . . . . . . . . . . . . 107

6.4.2 The two zero-temperature phases: Low-energy spectroscopy and ground
state diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.3 Further insights in the classical limit J⊥ = 0 . . . . . . . . . . . . . . . 111

6.5 Quantum dimer models with Rydberg atoms: beyond quantum ice . . . . . . . . . 113

6.5.1 Simple interactions, complicated lattices . . . . . . . . . . . . . . . . . 113

6.5.2 Emergent quantum dimer dynamics on a 4-8 lattice from an XXZ model 114

6.6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



xiv Contents

6.A Effect of the AC-Stark lasers on the ground state . . . . . . . . . . . . . . . . . . 117

6.B Global Rydberg laser excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.C Van der Waals interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.D Mixed interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.E Finite-size clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.F Classical Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.G Technical details on classical Monte Carlo simulations . . . . . . . . . . . . . . . 123

6.H Energy scales and possible effects of dissipation . . . . . . . . . . . . . . . . . . . 123

6.H.1 Energy scales and state preparation . . . . . . . . . . . . . . . . . . . . 123

6.H.2 Effects of spontaneous emission . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 7. Publication: Dynamical preparation of laser-excited anisotropic Rydberg crys-
tals 131

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Model and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.1 Laser excited interacting Rydberg atoms as an anisotropic spin model . . 132

7.2.2 Time dependent variational ansatz for many-body systems . . . . . . . . 134

7.3 Anisotropic interactions for Rydberg atoms in p-states . . . . . . . . . . . . . . . 138

7.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4.1 Validity of the variational approach for small systems . . . . . . . . . . 140

7.4.2 Isotropic Rydberg crystals . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4.3 Anisotropic Rydberg crystals . . . . . . . . . . . . . . . . . . . . . . . 145

7.5 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Chapter 8. Publication: Frustrated Quantum Magnetism with Laser-Dressed Rydberg Atoms151

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.3 Adiabatic elimination and effective spin Hamiltonian . . . . . . . . . . . . . . . . 155

8.4 Anisotropic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.A Van der Waals interactions between j = 1/2 Rydberg states . . . . . . . . . . . . . 159

8.B Laser excitation and hyperfine ground states . . . . . . . . . . . . . . . . . . . . . 162

8.C Effective ground state potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.C.1 Adiabatic elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



Contents xv
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Chapter 1

General Introduction

1.1 The world of quantum optics and ultra cold atoms

The immense experimental progress during the last decades allows the possibility to now trap and
control a single atom or photon in a definite region of space and prepare and manipulate it in a well-
defined quantum state. This is so spectacular, that even the founding fathers of quantum physics were
initially skeptical:

“We never experiment with just one electron or atom or (small) molecule. In thought-
experiments we sometimes assume that we do; this invariably entails ridiculous conse-
quences.” (W. Schrödinger, 1952) [1]

This incredible journey started in the mid 80s, when the physics Nobel price laureates of 2012,
S. Haroche and D. Wineland, and others developed ground-breaking experimental methods to con-
trol individual photons and atoms. This was a breakthrough, which opened a new door to explore
the fascinating and exotic world of quantum physics and laid the foundation for a new generation of
physicists to take the first steps towards building quantum computers and atomic clocks with unimag-
inable speed and precision. Today, quantum physicists around the world are actually able to perform
what used to be ‘Gedanken-experiments’ and reveal deeper lying aspects of the quantum world which
decades ago were considered to be pure abstraction.

Both S. Haroche and D. Wineland work in the field of quantum optics, which studies the non-
relativistic interaction of atoms with quantized light and is in the front line exploring the exotic
quantum world [2, 3]. A field, where theory and experiments profit from each other in a remark-
able synergy. The formulation of a quantized theory of light started in the mid 1920s right after the
birth of quantum mechanics when P. Dirac and others published seminal papers on the quantum the-
ory of radiation. During the next decades lot of effort was put into the calculation of optical spectra
and the explanation the natural line width of spectral lines due to the quantized vacuum. Undoubted,
the development of the maser and the laser by C. H. Townes, A. L. Schawlow and others and its
theoretical description, in particular by Haken, Lamb, Lax and Scully, was a revolution, both on the
experimental but also on the theoretical side. On the experimental side it opened a new era where
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light with a well defined frequency can be produced at a very high power, while on the theoretical
side it triggered the investigation of open quantum systems, where a system interacts with a noisy
environment. Glauber, Wolf, Sudarshan, Mandel, Klauder and many others were the first to look
for unambiguous quantum effects in light and described states with non-classical statistical proper-
ties. In the 1970s, H. J. Carmichel and D. F. Walls predicted that these non-classical states can be
generated in resonance fluorescence experiment from a two-level atom. Experiments at the single
particle level, which triggered the ‘Golden Age’ of experimental quantum optics, have become pos-
sible in the 1980s with the development of ion trap techniques by H. G. Dehmelt and W. Paul. The
first observation of non-classical light by J. Kimble et al. [4], the violation of Bell’s inequalities by
A. Aspect et al. [5] and the group of A. Zeilinger [6] and the first teleportation of atoms by the group
of R. Blatt [7] are only a few experimental highlights of the last decades which showed that there is
indeed a crucial difference between the classical and the quantum world. Quantum optics first entered
the field of quantum information science with the seminal proposal of Cirac and Zoller in 1995 to
use trapped ion to preform quantum gates [8]. As shown by recent experiments, in particular in the
labs of D. Wineland in Boulder and R. Blatt in Innsbruck, ion traps currently provide one of the most
promising approaches to quantum information processing [9].

Another major breakthrough was the development of cooling and trapping techniques of neu-
tral atoms using laser light by the groups of S. Chu, C. Cohen-Tannoudji and W. D Phillips in the
beginning of the 90s together with pioneering theoretical work from G. Ashkin, S. Stenholm, C.
Cohen-Tannoudji and many others [10, 11]. The key idea was to use the photon recoil together with
Doppler shifts to decelerate an atomic beam down to temperatures of micro-Kelvin. This, together
with evaporative cooling methods, culminated in the first experimental observation of Bose-Einstein
condensates by the groups of E. A. Cornell, C. E. Wieman and W. Ketterle in 1995 – a new quantum
state of matter predicted already in 1924 by S. Bose and A. Einstein [12].

The possibility of manipulating and controlling quantum many-body states of matter has paved the
way towards the investigation of strongly correlated phases and phenomena, which are ubiquitous in
various fields of physics ranging from high-energy physics to condensed matter physics. The regime
of strongly correlated systems with ultra cold atoms was first accessed in 2002 by I .Bloch, T. Hänsch
and coworkers [13]. In a groundbreaking experiment they observed a quantum phase transition from
a superfluid to a Mott-insulator state in an optical lattice realizing a seminal proposal of P. Zoller
and coworkers [14]. The key idea is to use the dipole forces of two counter-propagating laser beams,
forming a spatially periodic intensity pattern, acting on neutral atoms in order to realize a periodic
potential. Such optical lattices play the very same role as ions in solid-state crystals, providing an
underlying potential which affects the motion of the atoms as the ions do with the electrons. Optical
lattices provide a highly tunable quantum system where all parameters can be externally controlled,
e.g. the height of the potential can be tuned by varying the laser intensity leading to a competition
between quantum tunneling and interactions. Today, optical lattices have become a widely used
tool in many labs around the world to study strongly correlated many-body physics [15]. Moreover,
cold atoms in optical lattices provide a unique platform to realize interacting quantum spins systems
in various lattice geometries with tunable interactions, and thus the basic ingredients of competing
magnetic orders and frustrated magnetism. We will make use of these recent experimental advances
in III in order to implement various types of spin models using Rydberg atoms in optical lattices.
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1.2 Laser excited Rydberg atoms

Rydberg states are highly excited electronic states of atoms and molecules [16]. The existence of these
highly excited states was first demonstrated by Johann Balmer in 1885 who studied the wavelength of
light emitted by hydrogen atoms. Three years later Johannes Rydberg, who soon became the eponym
of these states, found a more generalized version of Balmer’s formula which nowadays is known as
the Rydberg formula. It predicts an infinite series of energy levels which converges to an ionization
limit.

Rydberg atoms have been studied for almost a century, mainly in the context of high precision
light-matter interactions, spectroscopy and plasma physics [16–19]. Due to their exaggerate prop-
erties they have become an ideal testing platform for modern quantum physics, e.g. to study the
quantized vacuum in resonant cavities in the group of S. Haroche [20] or the development of the atom
maser by D. Meschede et al.[21]. Rydberg atoms first entered the stage of quantum optics in 2000 as
an ideal candidate for quantum information processing by a seminal proposal from P. Zoller, M. Lukin
and coworkers [22, 23]. Since then quantum optics with Rydberg atoms became an extremely flour-
ishing and successful field which connects atomic physics and quantum optics with quantum infor-
mation science, condensed-matter and many-body physics in an interdisciplinary way [24].

What makes these highly excited atoms so special?

The properties of Rydberg atoms are compelling in many aspects: The electronic level structure
of Rydberg states in alkali atoms resembles the one of hydrogen atoms (up to corrections due to
quantum defects [25]) which is mainly determined by the principal quantum number n [16–19]. They
can be excited from atomic or molecular ground-states by laser light via absorption of one or more
photons, with Rabi frequencies scaling as ∼ n−3/2. This requires lasers with both, large intensities
and a narrow frequency width, in order to achieve a coherent evolution within the natural lifetime.
Rydberg atoms can have an orbital radius r ∼ a0n2 as large as µm, with a0 Bohr’s radius, and is only
loosely bound to the atomic core. This leads to a very large polarizability α ∼ n7 and therefore to
a very high sensitivity to external electric or electromagnetic fields. These highly excited electronic
states are long-lived, with life-times τ scaling as τ ∼ n3 (τ ∼ n5) for low (high) angular momentum
states, and can easily exceed hundreds of µs.

In contrast to neutral ground state atoms or ions, Rydberg atoms possess both strong and tunable
interactions over distances of several micrometers. These interactions can be more than ten orders
of magnitudes larger than van der Waals (vdW) interactions between neutral ground state atoms at
comparable distances and have the advantage, e.g. compared to ions, that they are tunable in strength
and shape using external fields. In the absence of external fields and for distances larger than the
Rydberg orbit, the dominant interaction is of the van der Waals type, VVdW ∼ (ea0)4n11/R6, with
e the electron charge. The interactions can be either attractive or repulsive (in contrast to the vdW
interactions of two ground state atoms) and can be isotropic for Rydberg s states or anisotropic for
higher angular momentum states [26, 27]. In the presence of external static electric or electromagnetic
fields, or close to a Förster resonance, the Rydberg-Rydberg interaction becomes dipolar, Vdd ∼
(ea0n2)2/R3, which is both long-range and anisotropic. Additional tunability can be achieved using
external AC or DC electric and magnetic fields. Recent experiments with cold and ultracold alkali
atoms have demonstrated vdW and dipole-dipole interactions for two Rydberg atoms as well as many-
body interactions [28–41].

Most applications of these strong interactions rely on the so-called Rydberg-blockade mechanism,
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which was first discovered in the context of quantum information processing with cold atoms [22, 23].
In the blockade regime the presence of a single atom laser excited to a Rydberg state shifts the energy
levels of the surrounding atoms within a characteristic radius rb (∼ µm), such that the laser excitation
probability to the Rydberg state for any other atom within a volume ∼ r3

b is strongly suppressed.
In this case the excitation becomes coherently delocalized among all particles within rb, which are
now collectively coupled to the laser with an enhanced Rabi frequency

√
NbΩ, where Nb is the atom

number within rb and Ω is the single-particle Rabi frequency. This is often referred to a as superatom
and has been observed in remarkable experiments in the groups of M. Saffman in Wisconsin [42] and
P. Grangier and A. Browaey in Paris [43], with two atoms trapped in a deep optical potential as a key
ingredient to realize two-qubit gates [44, 45]. Usually, quantum information is stored in long-lived
hyperfine states, only one of which is coupled by laser light to the Rydberg state. Rydberg-blockade
effects can be then utilized for acquiring collisional phase shifts conditional on the atomic ground
state population.

Similar ideas have been recently extended to encode and process quantum information in ensem-
bles of multilevel atoms [46], to generate many-particle entanglement [47], single-atom or single-
photon sources [48], or electromagnetically induced transparency in dense ensembles of Rydberg
atoms [49]. A fundamental new twist has been introduced by combining Rydberg-excited atoms with
optical lattices [36, 37] in order to study strongly correlated states. Part III of this thesis builds on
that experimental progress and extends previous work by combining Rydberg atoms in optical lattices
with anisotropic interactions present in higher angular momentum Rydberg states.

The strong, tunable and long-range interactions of Rydberg atoms, together with their long life-
time, make them an ideal candidate to study novel many-body effects. Recently, Rydberg interactions
and blockade effects have been observed both in cold gases (< mK) as well as in ultracold (. 100 nK)
Bose-Einstein condensates in the so-called frozen gas regime [50]. In the latter, the average kinetic
energies and spontaneous emission rates (∼ kHz) are much smaller than interactions (∼ GHz), and
thus the motion of the atoms can be neglected during the experimental timescales. This justifies ne-
glecting the atomic kinetic energy term in the Hamiltonian and treating the interacting gas as ‘frozen’
in a given configuration. In this limit the interacting gas of Rydberg atoms can be modeled as an
ensemble of two-level systems, where the ground and Rydberg states correspond to spin down- and
up-states, respectively, implying a fully coherent spin-model. This triggered a variety of theoretical
studies, which predict interesting ground states of these spin systems and analyzed the formation of
correlated Rydberg excitations [51–54]. In the superatom regime the spatial distribution of excita-
tions can become correlated giving rise to crystal-like patterns, while the atoms themselves act as
a featureless background medium. This has been recently demonstrated in notable experiments in
Munich [37].

Most interesting phenomena in condensed matter, however, seem to occur when the atomic kinetic
energy becomes comparable to, or even larger than, the average interaction energy. The competition
between these two energy scales can in turn determine phase transitions between various classical and
quantum many-body phases. For Rydberg atoms, this requires going beyond the frozen-gas regime,
where the external atomic motion has to be taken into account.

Early work in Ref. [55] has proposed to explore this regime either (i) by weakly admixing the
Rydberg state to the electronic groundstate using an off-resonant continuous-wave laser or (ii) via
a stroboscopic excitation of the Rydberg state using pulsed lasers. In both schemes the average in-
teraction strength between atoms can be made orders of magnitude smaller than the corresponding
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interaction between Rydberg states, and thus comparable with the mean kinetic energies. In ad-
dition, the average decay rate from the Rydberg state is considerably suppressed in both schemes,
leading to an increased lifetime of the effective laser-dressed two-level system [56]. Compared to
polar molecules [57] laser-driven Rydberg atoms have not only the advantage of a large and tunable
dipole moment, which can be of the order of several tens of Debye, but also to create ‘step-like’
potentials due to the blockade effect [58]. This allows one to explore strongly correlated many-body
physics with controllable long-range interactions for which a variety of novel classical and quantum
many-body phases have been predicted [59–62]. For example, recent theoretical work based on the
scheme (i) above has demonstrated that the groundstate of Rydberg-dressed atoms in the weakly inter-
acting regime can be a supersolid [63–66]. For strong interactions, correlated quantum and classical
phases can be realized, including a self-assembled crystal [67] with individual atoms arranged in a
periodic structure. As we discuss in Chapter 3, however, stronger interactions usually come at the
expense of a comparatively shorter lifetime, and this can lead to strong mechanical effects, which can
crucially alter the dynamics of such interacting gases.

1.3 Quantum Simulations

The groundbreaking experimental achievements with ultra cold atoms, molecules and ions mentioned
in the previous section paved the way towards the investigation of strongly correlated many-body
systems. From the computational viewpoint, simulating a strongly correlated, many-particle problem
often challenges or even surmounts the capabilities of a classical computer already at the few particle
level, especially when fermions or frustrated interactions are involved. Consider for example 100
spins – the number of possible configurations is 2100, which already exceeds the number of particles
in the entire (known) universe. Storing the Hamiltonian on a classical computer is thus a hopeless
task. This was already pointed out by R. Feynamn in 1982 who proposed to use a controllable and
clean quantum system in order to simulate another quantum system under investigation

“Let the computer itself be built of quantum mechanical elements which obey quan-
tum mechanical laws.” [68]

In recent years, the field of quantum simulation – quantum devices which simulate a particular kind
of quantum system – grew rapidly in an interdisciplinary way bringing together the fields of ultra cold
atomic, molecular and optical physics (AMO) with quantum information, condensed matter physics
and recently high-energy physics [69, 70].

In a digital version of a quantum simulator [71] the quantum system is encoded in a register of
qubits and the time evolution is then split up into elementary quantum gates. A small set of so called
‘universal single and two-qubit gate operations’ is sufficient to approximate the time evolution of any
(finite) quantum system with quasi-local interactions. Many platforms are currently being developed
including ions, atoms, molecules, photons, superconductors and solid-state systems. One of the most
advanced approaches to general quantum information processing uses strings of cold ions [72]. The
drawback of the ‘digital’ approach is that high accuracy comes at the cost of very small time steps
and therefore a very large number of quantum gates. On the other hand this approach provides the
universality and flexibility to simulate higher-order interactions, like three- or four-body interactions,
and error-bounds are very well understood, which can even be corrected using more involved error
correction protocols [73].
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An alternative approach is the ‘analog’ quantum simulator, where the time-evolution of the quan-
tum system under investigation is mapped one-to-one onto another well-controlled quantum system.
Several platforms are currently being developed, ranging from trapped, cold samples of atoms and
molecules, to trapped ions and circuit QED systems. In particular, ultra cold atoms in optical lattices
have been proven to be a very promising candidate, where bosonic or fermionic atoms are well iso-
lated from the environment and can be controlled with very high precision. Additionally, single-site
resolution allows one to individually manipulate and read-out atoms [74]. Recently, strongly cor-
related systems in the presence of static gauge potentials such as spin-orbit couplings and artificial
magnetic fields [75–77], which in part build on proposals from Innsbruck [78], have been realized.
This illustrates an additional advantage of quantum simulators: they can reach parameter regimes that
are not accessible in condensed matter systems, e.g. artificial magnetic fields larger than a few thou-
sand Tesla. Further extensions of this experimental toolbox will pave the way to quantum simulation
of more complex lattice gauge theories with dynamical gauge fields, which appear in both condensed
matter and high-energy physics [79, 80].

Gauge theories are the typical playground where quantum simulation can provide notable insights.
In high-energy physics, the standard model of particle physics is described in terms of gauge theories.
In particular, the theory of strong interactions, QCD, still presents notable challenges, due to the
limitation of classical algorithms to access the so-called finite density regimes, which are relevant for
both understanding colliding experiments and the interior of complex astrophysical objects such as
neutron stars.

There is currently a strong ongoing effort to develop theoretical proposals of quantum simulators
for such lattice gauge theories with cold atoms (in optical lattices) [81–86]. In this respect, Rydberg
atoms in optical lattices are a very promising add-on, offering genuinely new capabilities for simu-
lating many-body spin systems [87]. These include tunable long-range interactions, the possibility to
shape the effective interaction potentials using laser parameters, fast and precise control of the simu-
lated Hamiltonian and the engineering of controlled dissipative effects. This allows to realize a broad
class of models including non-equilibrium systems, spin glasses, and both isotropic and anisotropic
spin models. In part III of this thesis, we develop a quantum simulator based on Rydberg atoms in
optical lattices in order to implement toy models of quantum spin ice, a condensed matter version of
quantum electrodynamics.

1.4 Overview of the thesis

The results of the present thesis have been grouped into three parts that mainly contain reprints of
already published peer-reviewed articles and of manuscripts that have been submitted and are avail-
able online as preprints. The reprints may differ slightly from the referenced originals for editorial
reasons, and at the beginning of each reprint a footnote indicates the contributions that the author of
the present thesis has made to the respective work. Some parts contain additional material which is
the basis of preprints currently being written.

Part I of this thesis studies mixtures of Rydberg atoms and polar molecules as open quantum
systems. In particular, this part of the thesis (i) presents a new scheme to cool generic polar molecules
from the milli-Kelvin to the micro-Kelvin regime and (ii) investigates strongly interacting laser-cooled
Rydberg atoms in a two-dimensional layer configuration.
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The production of quantum degenerate gases of polar molecules is a key goal of cold gas physics.
In fact, cooling molecules to temperatures of the order of µK or below would enable a variety of
breakthroughs in physics and chemistry [57], ranging from controlled ultra cold chemistry to better
precision spectroscopy and probes of fundamental symmetries and constants, in addition to the real-
ization of quantum phases of dipolar matter [60]. Several breakthroughs have been recently realized
in the groups of J. Ye and D. Jin, who for the first time produced a high-density gas of ultracold KRb
polar molecules in their absolute rovibrational ground state and achieved “evaporative cooling” of hy-
droxyl molecules [88]. A very promising approach to reach degeneracy specific to bialkali molecules
is to start from already ultracold atomic mixtures and then use a Feshbach resonance to create het-
eronuclear molecules in a highly excited vibrational state [89]. These molecules must then be brought
to the vibrational ground state, e.g. by STIRAP processes, as demonstrated at JILA with fermionic
KRb molecules and in the group of H.-C. Nägerl in Innsbruck with bosonic RbCs [90].

The goal of Chapter 2 is to identify a coupling and cooling mechanism for generic molecules
which exploits efficient energy-transfer with a properly-designed environment, based on long-range
(> 100 nm scale) interactions. This would make the cooling mechanism largely independent of the
internal molecular structure (usually important below <10 nm) and thus an ideal generic mechanism
to cool comparatively complex molecules beyond bialkali ones to µK temperatures. The main in-
novation of our work is that we have identified cold Rydberg atoms as ideal candidates to act as
an efficient coolant for molecules in atom-molecule mixtures, where large collisional cross-sections
based on, e.g., dipole-dipole or van der Waals repulsive interactions can ensure efficient energy trans-
fer even at long distances. In particular, propose a scheme to engineer three dimensional interaction
potentials between laser-dressed Rydberg atoms and ground state polar molecules, in order to achieve
direct cooling of generic polar molecules. The atoms act as a tailored (low-temperature) reservoir for
both elastic and inelastic collisions with remarkable and potentially useful properties: strong repulsive
shields protect from inelastic collisions at short interparticle distances and exceedingly large elastic
scattering cross sections lead to rapid thermalization. Moreover, we discuss a dissipative (inelastic)
collision where a spontaneously emitted photon carries away (kinetic) energy of the collisional part-
ners similar to a ‘collisional Sisyphus’ effect, thus providing a significant energy loss in a single colli-
sion. This work has been inspired by recent experiments in the group of G. Rempe in Munich, where
they opto-electrically cooled CH3F molecules using a similar Sisyphus effect [91] and by U. Vogel
and M. Weitz who demonstrate laser cooling of an atomic gas based on collisional redistribution of
radiation, using rubidium atoms in argon buffer gas [92]. The main results are presented in Chapter 2
as a reprint of the publication

• Atomic Rydberg Reservoirs for Polar Molecules
B. Zhao∗, A. Glätzle∗, G. Pupillo, P. Zoller (∗ both authors contributed equally to this work)
Phys. Rev. Lett. 108 193007 (2012-05-11).

Due to the finite lifetime of Rydberg states, the stability of a Rydberg gas is an obvious concern
for applications requiring long experimental time scales, e.g. cooling polar molecules or dynamically
preparing many-body phases of dressed atoms. In particular, decoherence effects such as spontaneous
emission and blackbody radiation of the Rydberg states are important to consider, taking place on a
timescale of microseconds. We studied this problem and found that indeed such dissipative dynamics
are crucial and can alter the stability of the self assembled atomic crystals. The spontaneous emission
from a Rydberg state is followed by cascaded processes through intermediate states. Atoms occupying
one of those intermediate states can possess a huge dipole moment when external fields such as an

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.193007
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electric DC field is present. These large dipoles induce strong mechanical forces and lead to heating
or melting of the crystals. We investigate the interplay between interactions, spontaneous emission
and laser cooling for Rubidium atoms taking into account more than 3000 internal electronic levels
and simulated the (classical) motion and the cascaded decay using semi-classical molecular dynamics
simulations. It becomes apparent that the mechanical heating effects can be substantially mitigated
by performing active laser cooling, which is discussed in Chapter 3 as a reprint of the publication

• Driven-dissipative dynamics of a strongly interacting Rydberg gas
A. Glätzle, R. Nath, B. Zhao, G. Pupillo, P. Zoller
Phys. Rev. A 86 043403 (2012-10-02).

As an alternative way to cool polar molecules with Rydberg atoms we aim to understand strong,
long-range dipolar interactions between hot polar molecules and a cold gas of Rydberg atoms trapped
in two separate two-dimensional layers in order to ensure collisional stability. We show that the
molecular kinetic energy can be efficiently transferred from the gas of hot molecules to the cold
atoms via the long-range interactions. Moreover, the spatial crystalline structure of the atoms can
be used to dynamically tailor the spatial structure of the molecules, which can form atom-molecule
bound states over both layer as the steady state of the cooling dynamics. We present these results as
additional material in Chapter 4 which is the basis of a preprint currently being written.

Part II of this thesis proposes setups and schemes for quantum information processing and quan-
tum simulation using Rydberg ions. As part of the CHIST-ERA Rydberg ion consortium, our studies
focus on proposing quantum computation and simulation, making use of the properties of Rydberg
excitations in an ionic crystals [93].

Motivated by and building on new experimental possibilities realizing two-dimensional arrays
of ions we investigated a mechanism that permits the parallel execution of multiple quantum gate
operations within a single long linear ion chain. The approach is based on large coherent forces that
occur when ions are electronically excited to long-lived Rydberg states. The presence of Rydberg
ions drastically affects the vibrational mode structure of the ion crystal, giving rise to modes that are
spatially localized on isolated sub-crystals, which can be individually and independently manipulated.
We theoretically discuss this Rydberg mode shaping in an experimentally realistic setup and illustrate
its power by analyzing the fidelity of two conditional phase flip gates executed in parallel. This is
discussed in Chapter 5 as a reprint of the publication

• Parallel execution of quantum gates in a long linear ion chain via Rydberg mode shaping
W. Li, A. Glätzle, R. Nath, I. Lesanovsky
Phys. Rev. A 87 052304 (2013-05-06)

The ability to dynamically shape vibrational modes on the single-ion level might find applications in
future quantum simulators and quantum computation architectures.

Part III of this thesis is concerned with anisotropic Rydberg interactions present in states such as
Rydberg p-states. Our main focus is on implementing quantum simulators for various quantum-spin
models characterizing frustrated magnets, a challenging field for both experimentalists and theoreti-
cians. The frustration can arise either due to the geometry (e.g. triangular or pyrochlore lattices) or
due to the non-trivial interaction pattern (which we try to engineer with Rydberg p-states).

http://journals.aps.org/pra/abstract/10.1103/PhysRevA.86.043403
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.87.052304
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In the first project we showed how to implement a toy model of quantum spin ice on a 2D checker-
board lattice, which represents a textbook example on how the physics of frustrated magnets is related
to gauge theories. The core part of the paper consists of developing an atomic toolbox building on
recent experimental advances and opportunities in engineering many-body interactions with laser
excited Rydberg states. The goals is to design a set of constrained interactions between cold Ryd-
berg atoms giving rise to a six-fold degenerate ground state manifold obeying the “ice-rules”. This
demands the exploitation of the strong angular dependence of van der Waals interactions between
Rydberg p-states. Together with the possibility of designing step-like potentials using ground state
atoms weakly dressed by Rydberg states, we can implement Abelian gauge theories in a series of
geometries, which could be demonstrated within state of the art experiments. Our motivation is not
only to realize the 2D spin ice per se, but to develop the atomic physics tools for this much broader
class of lattice gauge models including the quantum dimer and other vertex models. We emphasize
in particular the connection to quantum link models, as developed originally in a high energy physics
context (see references in the paper), which for the U(1) case can be understood as a quantum spin ice
on a square lattice. In addition, also the conventional isotropic s-state Rydberg-Rydberg interactions
can be utilized together with quite intricate lattice geometries, e.g. a 4-8 lattice, to simulate frustrated
magnetism. Our results are presented in Chapter 6 as a reprint of the publication

• Quantum Spin Ice and dimer models with Rydberg atoms
A. Glätzle, M. Dalmonte, R. Nath, I. Rousochatzakis, R. Mössner, P. Zoller
Phys. Rev. X 4 041037 (2014-11-25).

In a further project regarding many-body physics with anisotropic interactions between Rydberg
atoms excited to p-states we study the adiabatic laser-excitation of Rubidium atoms in an optical
lattice. This can be seen as an extension of a recent experiment done in the group of I. Bloch and
C. Gross in Munich [37] where they used isotropic s-states. In Chapter 7, which is a reprint of the
publication

• Dynamical preparation of laser-excited anisotropic Rydberg crystals in 2D optical lattices
B. Vermersch, M. Punk, A. Glätzle, C. Gross, P. Zoller
arXiv:1408.0662 (2014-08-04),

we developed a time-dependent variational mean field ansatz to model large but finite two-dimensional
systems in experimentally accessible parameter regimes. Additionally, we present numerical simula-
tions to illustrate the dynamical formation of both isotropic and anisotropic Rydberg crystals.

In the last chapter of this part we show how to implement Quantum Kagome Ice [94] with ‘non-
particle number conserving’ spin-flip terms of the form S +S + + S −S − using Rydberg dressed atoms
excited to p-states. While in the previous work of Chapter 6 spin-flip terms were engineered by using
tunneling in an optical lattice after mapping the spin degrees of freedom onto hard-core bosons, here,
we take an alternative route: The central idea is to represent the quantum spin degree of freedom
using two hyperfine ground states of Alkali atoms and weakly admix them with high-lying Rydberg
states of a given fine structure component using laser light. In such a set-up single atoms are prepared
in a Mott state and kept frozen at each lattice site. This leads to much more favorable exchange
energy scales by considering laser excited Rydberg atoms in large spacing optical lattices and allows
a complete toolbox of general spin-spin interactions with variable range, i.e. nearest neighbor, or next

http://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.041037
http://arxiv.org/abs/1408.0662
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nearest neighbor couplings etc. in the lattice, as well as the realization of anisotropic spin couplings.
Additionally, lattice spacings of a few micrometers allow single-site addressing with laser light and
thus individual manipulation and readout of atomic spins. These results are presented as a reprint of
the publication

• Frustrated Quantum Magnetism with Laser-Dressed Rydberg Atoms
A. W. Glaetzle, M. Dalmonte, R. Nath, Christian Gross, Immanuel Bloch, and P. Zoller
arXiv:1410.3388 (2014-10-05).
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[22] D. Jaksch, J. I. Cirac, P. Zoller, R. Côté, and M. D. Lukin, Physical Review Letters 85, 2208
(2000).
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We discuss laser dressed dipolar and Van der Waals interactions between atoms and polar
molecules, so that a cold atomic gas with laser admixed Rydberg levels acts as a designed reser-
voir for both elastic and inelastic collisional processes. The elastic scattering channel is character-
ized by large elastic scattering cross sections and repulsive shields to protect from close encounter
collisions. In addition, we discuss a dissipative (inelastic) collision where a spontaneously emit-
ted photon carries away (kinetic) energy of the collision partners, thus providing a significant
energy loss in a single collision. This leads to the scenario of rapid thermalization and cooling of
a molecule in the mK down to the µK regime by cold atoms.

2.1 Introduction

There is at present significant interest in preparing and manipulating cold samples of molecules [1–3].
A promising avenue towards this goal seems to employ the ubiquitous ultracold atomic gases as cold
reservoirs, and to study mixtures of atomic and molecular gases, where molecules and atoms interact
via collisional processes [4]. Given the well developed tools in manipulating atoms with external
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the manuscript. In particular, he developed the Sisyphus cooling scheme, derived the coupled Liouville-equations and did
the molecular dynamics simulations of the collisional process.
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atom molecule

(a) (b)

(c)

Figure 2.1. (a) Energy levels of a laser excited atom and a rotational spectrum of a polar
molecule. The Rydberg state |r〉 interacts with the molecule via a dipole-dipole interaction
Vdd (see text). (b) Born-Oppenheimer (BO) potentials for the laser dressed atom + molecule
complex. We consider a dissipative collision, where (1) the particles collide on the potential
curve V1(r) with the atom in |g1〉, climb the “blue shield” step at rc, and (2) are quenched to
the potential V2(r) with atom in g2. The dominant atomic state is indicated with the molecule
in its ground state. (c) Decay rate γ1(r) of the BO potential (see text).

electromagnetic fields [5], it is natural to ask whether we can “design” these atom-molecule interac-
tions, thus effectively engineering an atomic reservoir with desired (collisional) properties. Below we
will describe a specific scenario of engineered elastic and inelastic collisions involving laser-dressed
atoms and ground state molecules with remarkable, and potentially useful properties. This includes
(i) strong repulsive shields to protect from inelastic collisions and chemical reactions and (ii) exceed-
ingly large scattering cross sections for elastic scattering between the atom and the molecule. The
relevant energy (temperature) range includes several mK down to µK. Equally important, we will
show that (iii) we can design a “dissipative collision” where a spontaneously emitted photon carries
away (kinetic) energy of the collision partners, thus providing a significant energy loss in a single
collision what could be called “collisional Sisyphus” effect [6], in analogy to Sisyphus laser cooling
of single atoms in external trapping potentials [7]. This suggests rapid thermalization and cooling of
a molecule by the cold atom reservoir.

The atomic and molecular level scheme, and the collisional process we have in mind are illustrated
in Figs. 8.1(a) and (b), respectively. The basic ingredient is the long range dipolar interaction between
molecules in the rovibrational ground state and laser excited Rydberg atoms. The Rydberg state |r〉 is
chosen so that its electric dipole transitions to neighboring states approximately matches the rotational
excitation spectrum of the polar molecule with frequencies in the microwave regime (cf. Fig. 8.1a),
implying a near resonant exchange of molecular and atomic excitations. We focus below on the
conceptually simplest configuration, where this interaction reduces to a large repulsive and isotropic
Van der Waals interaction, VvdW(r) = C6/r6, a situation analogous to the large Rydberg-Rydberg
interactions underlying the dipole blockade mechanism and the formation of superatoms [8–11].
This interaction is admixed to the atomic ground state |g1〉 with a blue detuned laser ∆r > 0, thus
providing an effective interaction between the ground state atoms and molecules. The relevant Born-
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Oppenheimer (BO) potential for the laser dressed complex is sketched in Fig. 8.1(b) as V1(r) (see
below), and defines a collision channel for a molecule and atom initially in |g1〉. In this collision the
particles moving adiabatically on V1(r) will encounter a steep “blue shield” potential [12] at a distance
VvdW(rc) = ∆r, where typically rc & 100 nm. By adding a second laser which couples the long-lived
Rydberg state |r〉 down to a low-lying short lived excited state |e〉 with a detuning ∆e = δ+∆r > 0 (see
Fig. 8.1a), we can add a plateau for r < r′c to the adiabatic potential V1(r), so that atoms are efficiently
quenched to the ground state |g2〉 with potential V2(r) according to the rate γ1(r) in Fig. 8.1(c).

This leads to the following overall picture of collisions illustrated in Fig. 8.1(b): (i) for a kinetic
energy of relative motion less than the potential step in V1(r), i.e. Ekin < δ, we have an elastic
collision from an effective hard core potential with (large) radius rc; (ii) in a collision with Ekin > δ

the particles will climb the potential step entering the flat dissipative region, which acts as a “trap
door” so that in a single collision the kinetic energy ∼ δ is carried away by the spontaneous photon
with the atom being left in |g2〉. Below we will work out a quantitative description of these collisional
processes, and argue that they can occur with high fidelity. An essential argument is that during the
collision the particles never enter the small distance regime [shaded region in Fig. 8.1(b)], and thus
the collisional dynamics does not couple significantly to other channels. The above collision cycle
can be repeated by pumping atoms from |g2〉 back to |g1〉 so that a significant amount of energy can
be lost in a few collisions. Besides, due to the large collision cross sections for elastic processes there
is efficient thermalization of the molecules and atoms (sympathetic cooling).

2.2 Master equation

The dynamics of the atom and molecule for a dissipative collision is described by a master equation,
ρ̇ = −i

[
H, ρ

]
+ Lρ, with the RHS as sum of a Hamiltonian and dissipative part, and ρ the reduced

system density operator after tracing over the vacuum modes of the radiation field. Such an equation
is readily written down as an extension of the familiar master equations of laser cooling for atoms by
including the molecular dynamics and the atom-molecule interactions. We neglect, however, recoil
kicks from laser absorption and spontaneous emission, and Doppler shifts, as they provide only small
corrections to our collisional dynamics.

The Hamiltonian has the form H = T̂ + ĤI(r), where T̂ = P2/2M + p2/2µ is the kinetic energy
with P (p) the center of mass (relative) momentum and M (µ) the total (reduced) mass, and ĤI(r) =

H0M + H0A + Vdd(r) is the Hamiltonian for the internal degrees of freedom as sum of a molecular
and atomic Hamiltonian, and the dipole-dipole interaction. For the molecule we assume a rigid rotor
Hamiltonian H0M = BN2 with B the rotational constant, and N the angular momentum. For the atomic
Hamiltonian we write in the rotating wave approximation

H0A = δσ̂ee −
∑

s=r,r′
∆sσ̂ss +

[
1
2

Ωrσ̂rg1 +
1
2

Ωeσ̂re + h.c.
]

with notation σ̂i j = |i〉〈 j| for the atomic transition operators, and atomic states according to Fig. 1(a).
Here we consider the conceptually simplest situation where |r〉 = |n, s〉 and |r′〉 = |n − 1, p〉, with
n the principal quantum number and s and p the orbital angular momentum quantum number [13].
By ∆r (δ) and Ωr (Ωe) we denote the detuning and Rabi frequency of the exciting (quenching) lasers,
respectively, and by −∆r′ the energy of the |r′〉 state. For an energy mismatch E0 = Ea − Em �
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min{Ea, Em} between the atomic Rydberg states, Ea = Er − Er′, and the rotational splitting of the
molecule, Em = 2B, the interaction is dominated by the dipole-dipole interactions between the two
channels |r〉|0〉 and |r′〉|1〉. The interaction Hamiltonian between a Rydberg atom and the molecule
separated by a distance r = rr̂ is Vdd = [dr · dm − 3(dr · r̂)(dm · r̂)]/r3(|r〉〈r′| ⊗ |0〉〈1| + h.c.) for
distances larger than the size of the Rydberg atom, r > rs ∼ n2a0, where a0 is Bohr’s radius. Here,
dr = 〈r|d̂|r′〉 and dm = 〈0|d̂|1〉 are the atomic and molecular transition dipole moments, respectively,
with d̂ the dipole operator. For distances r > rc0 = (drdm/E0)1/3, we can adiabatically eliminate
|r′〉|1〉 and obtain the effective interaction between |r〉 and |0〉, which is a repulsive and isotropic
van-der-Waals interaction C6/r6 in three-dimensions with strength C6 = 2d2

r d2
m/3E0. Finally, the

Liouvillian L in the master equation describes dissipative processes due to spontaneous emission.
We write L = Le + Lp + Lb, where Le = γeD[σ̂eg2] and Lp = γ2D[σ̂g2g1] account for spontaneous
decay from |e〉 to |g2〉 and re-pumping from |g2〉 to |g1〉, respectively, with Lindblad term D[σ̂]ρ =

σ̂ρσ̂† − σ̂†σ̂ρ/2 − ρσ̂†σ̂/2. The third term Lbρ describes undesired decays, including in particular
spontaneous emission from the Rydberg state, as discussed below.

2.3 Born-Oppenheimer approximation

We proceed by identifying the BO potentials of the dressed atom-molecule complex as eigenval-
ues of the internal Hamiltonian ĤI(r)|i(r)〉 = Vi(r)|i(r)〉 depending parametrically on r [compare
Fig. 8.1(b)], which, in an adiabatic approximation, provide effective interaction potentials for atoms
and molecules. In particular, the dressed groundstate potential V1(r) corresponds to the BO en-
ergy surface that asymptotically connects to the ground state of the atom at large distances, i.e.,
|1(r → ∞)〉 ∼ |g1, 0〉. There, atom and molecule are essentially non-interacting. As explained above,
the step-like character is obtained in combination with laser dressing on two internal atomic transi-
tions: (i) by coupling |g1〉 with |r〉 in the weak-dressing regime Ωr/∆r < 1 and for blue detuning
∆r > 0, V1(r) becomes approximately V1(r) ' C6/r6 for distances r < rc, with r ∼ rc = (C6/∆r)1/6

a resonant Condon point with typical values in the hundreds of nm. This design of interactions is
similar to blue-shielding techniques with cold atoms and molecules, however it exploits repulsive
vdW-interactions and thus works in three-dimensions. The dominant contribution to the |1(r)〉 is now
|r, 0〉, with τr ∼ n3 the lifetime of |r〉, e.g., in the hundreds of µs regime for n ∼ 80 [10]. (ii) A second
Condon point can be engineered at distances r′c ≡ (C6/∆e)1/6 < rc by weakly admixing |r〉 with the
low-energy excited state |e〉, using laser light with Ωe/∆e < 1 and ∆e > ∆r. Here we assume that |e〉
interacts only weakly with the molecule and thus V1(r) becomes essentially flat for r . r′c. Population
in |e〉 quickly decays to a second groundstate |g2〉 at a rate γe ∼ MHz. This makes the decay rate
from |1(r)〉 strongly position-dependent as γ1(r) = γe|〈1(r)|e, 0〉|2, see sketch in Fig. 8.1(c). The BO
potential V2(r) with |2(r)〉 ∼ |g2, 0〉 is essentially flat, Fig. 8.1(b).

Different BO potentials are coupled via residual non-adiabatic transitions at rc and r′c. In par-
ticular, population transfer at rc from |1(r)〉 to the BO eigenstate that connects to |r, 0〉 for r � rc

could induce significant heating and losses. An estimate of the non-adiabatic transition probability
can be computed for b � rc within a 1D Landau Zener model as PLZ = exp(−2πΩ2

r/(αv)), with α
is the difference of the gradient of the bare potentials at rc. This shows that for any given velocity
v (in relative coordinates) non-adiabatic transitions can be always suppressed by increasing Ωr. Full
3D computations of the non-adiabatic transition probabilities in the semiclassical limit confirm these
predictions, see Supplementary. Since |e〉 decays to |g2〉, diabatic transitions at r′c from |1(r)〉 to the
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BO eigenstate which adiabatically connects to |e, 0〉 for r � r′c are allowed in our scheme.

Additional diabatic crossings with potential surfaces involving different Rydberg states as well as
attractive resonant dipole-dipole interactions lead to collisional two-body losses for distances r . rc0 .
Moreover, interactions between the Rydberg-electron and the molecule play a significant role for
r . rs [14]. These effects are suppressed by a ”blue-shield” at r′′c > max{rs, rc0} confining particles’
motion to r > r′′c [15].

2.4 Reservoir engineering and molecular cooling

In our scheme, we consider hot molecules undergoing a few scattering processes with cold, interact-
ing, Rydberg-dressed atoms, with lifetime τd ' τr(Ωr/2∆r)−2. Cooling of the molecules comes as a
combination of sympathetic cooling with atoms with large elastic cross sections σ ∼ πr2

c as well as
photon-assisted controlled inelastic interactions in a timescale τc . τd to avoid spontaneous emission
from |r〉 and collisional losses with Rydberg-excited atoms [16].

The basic scheme of photon-assisted inelastic collisions can be understood for just an atom and a
molecule initially interacting via the BO potential V1(r). It comprises two steps: Firstly, spontaneous
emission from |e〉 couples |1(r)〉 and |2(r)〉, according to the spatially-dependent rate γ1(r), removing
an amount of energy . δ; secondly, a weak re-pumping laser can transfer population back from
|2(r)〉 to |1(r)〉, thus closing the cooling cycle. By focussing on V1(r) and V2(r) only and neglecting
for a moment unwanted effects described by Lbρ, within the secular approximation the dissipative
collisional dynamics in the relative-coordinate frame can be described semiclassically by two coupled
Liouville-equations (

∂

∂t
+

p
µ

∂

∂r

)
fi =

[
∂Vi

∂r
∂

∂p
− γi(r)

]
fi + γ j(r) f j. (2.1)

Here fi(r,p, t) is the Liouville density accounting for the phase-space distribution of the atom-molecule
system in state |i(r)〉 (i, j ∈ {1, 2}, i , j). The first term in the RHS is the interaction force, proportional
to the gradient of the BO potentials discussed above. The second and third terms are the spatially de-
pendent decay rate γ1(r) and the re-pumping rate γ2, coupling the two equations. The step-like shape
of γ1(r) sketched in Fig. 8.1(c) reflects the one of V1(r), such that γ1(r) ' γe for r′′c < r < r′c and
γ1(r) ' 0 otherwise. As a result, for incoming relative kinetic energies Ekin < δ, particles are re-
flected elastically at r ≈ rc, while particles with Ekin > δ can reach the region r < r′c with a velocity
v′ =

√
2(Ekin − δ)/µ and undergo photon-assisted inelastic collisions. For any given v′, spontaneous

emission from |e〉 to |g2〉 [and thus population transfer from |1(r)〉 to |2(r)〉] can be made to occur
deterministically in a region of length d = r′c − r′′c , by choosing d such that γed/v′ > 1. This removes
an energy of order Eloss ' δ in every single collision, with δ as large as mK, as shown below. We
ensure that the inverse re-pumping from |2(r)〉 to |1(r)〉 takes place for distances r > rc by requir-
ing γ2d/v′ � 1. In addition, we choose γe[ΩrΩe/(4∆rδ)]2 < γ2 to ensure that the effective Raman
transfer rate of population from |g1〉 to |g2〉 via |r〉 is small, and thus the atomic population is in |g1〉
at r � rc. These requirements can be satisfied for realistic atom/molecule configurations, as shown
below.

We investigate numerically this dissipative scheme by performing molecular dynamics simula-
tions of the collision of an atom and a molecule, based on Eq. (2.1). The extension to the case of
several atoms and molecules is straightforward. In a semiclassical approximation, the mean energy
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Figure 2.2. Dissipative collisions: (a) Energy loss Eloss per collision vs impact parameter b
and initial relative kinetic energy Ekin. (b) Distribution f of final relative kinetic energies E′kin
after a single collision for different b, for an initial Boltzmann distribution with kBT/δ ≈ 0.5.
(c) Average final kinetic energy 〈E′kin〉 of the corresponding distribution after a single collision.
(d) Ekin (solid lines, left axis) and the average relative kinetic energy 〈Ekin〉 (dotted line, right
axis) vs time with Γ = ρσvµ ≈ 2π × 2.3 kHz the collision rate (see text). Parameters: dm = 7
Debye, dr = 4400 Debye, E0 = 2π × 2.5 GHz, ∆r = 2π × 60 MHz, Ωr/∆r = 0.42, δ/∆r = 0.33,
Ωe/∆r = 0.25, rc ≈ 218 nm, r′c/rc ≈ 0.95 , and r′′c /rc ≈ 0.81.

loss Eloss in a collision in 3D is computed as Eloss =
∫

[V1(r)−V2(r)]γ1(rcl)p(rcl)dt, where rcl denotes
the classical trajectory of the atom/molecule collision, and p(rcl) is the probability that the atom de-
cays at a given position rcl, with ṗ(t) = −γ1(rcl)p(t). As an example, in the calculations we consider
a NaH molecule (dm ≈ 7 Debye) and a Cs atom with Rydberg states |r〉 = |46s〉 and |r′〉 = |45, p〉,
respectively, with dr ≈ 4400 Debye and E0 = 2π × 2.5 GHz. The laser parameters are ∆r = 2π × 60
MHz, Ωr/∆r = 0.42, δ/∆r = 0.33, Ωe/∆r = 0.25, so that rc ≈ 218 nm, r′c ≈ 208 nm, and r′′c ≈ 177
nm [17]. Figure 8.2(a) shows the computed Eloss as a function of the initial relative kinetic energy
Ekin and the impact parameter b. For b > rc the collision is essentially elastic, as expected. However,
for b . rc and energies Ekin > δ the molecule is able to climb the potential step δ of V1 at r ∼ rc, thus
undergoing deterministic decay to |2(r)〉.

The effects of this dissipative collisional cooling on a molecular gas with an initial thermal dis-
tribution with average temperature T = 0.5 mK where δ ≈ 2kBT with kB Boltzmann’s constant is
shown in panel (b). For each fixed value of b we perform N ' 105 computations of the collision
dynamics, by randomly generating a sample of initial kinetic energies Ekin, according to a Boltzmann
distribution. The figure shows the final population distribution f as a function of the final energy
E′kin = Ekin − Eloss, for fixed values of b, with laser parameters as in Fig. 8.2(a). We find that for
impact parameters b > rc the distribution f in relative coordinates is largely unaffected by the colli-
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sion (case b = rc in the figure). For b < rc, however, all population with initial energy Ekin > δ is
shifted by an amount ∼ δ towards lower energies. The corresponding average final E′kin is shown in
Fig. 8.2(c) as a function of b. For heads-on collisions with b = 0 approximately 50 % of the initial
kinetic energy is removed after a single collision.

For given δ, Ekin and atoms at rest, the energy loss rate is estimated as

−dEkin/dt = ρ(2Ekin/µ)1/2F (Ekin),

with F (Ekin) =
∫ rc

0 Eloss(b, Ekin)2πbdb and ρ the atomic gas density. The latter is limited by atom-
atom interactions of the form Vaa ' (Ωr/(2∆r))4Vrr for atomic distances r > ρ−1/3

max , with Vrr =

C̃6/r6 the vdW interaction between Rydberg states and ρ−1/3
max = [C̃6/(2∆r)]1/6 a resonant Condon

radius (ρ−1/3
max ' 1.7 µm for the parameters above). Figure 8.2(d) shows the presence of two cooling

timescales (solid lines): For Ekin > δ, cooling of an energy ∼ δ is achieved on a fast timescale of a
few Γt, with Γ = ρσvµ ≈ 2π× 2.3 kHz the collision rate, for ρ = (2 µm)−3, rc ≈ 218 nm, T = 0.5 mK,
vµ =

√
3kBT/µ ≈ 0.78 m/s. For Ekin < δ cooling proceeds slowly, in accordance with the small γ1(r),

for r > rc. The same qualitative behavior is found in the average kinetic energy (dots). The lifetime
of the dressed state is here τd ≈ 1 ms (τr ≈ 45 µs), and thus for the parameters above more than 10
collisions are allowed while cooling. We note that δ can be dynamically reduced in experiments.

In the lab frame, a molecule loses its energy due to a combination of both collisional dissipative
cooling and sympathetic cooling. The dominant effect depends on the mass ratio mA/mM. For an
atom initially at rest, an analytic estimate for the atomic and molecular velocities v′A and v′M after the
collision can be obtained from a simplified model where the total energy is reduced by δ whenever
µv2

M/2 > δ, with vM the initial molecular velocity, and is conserved otherwise, as

v′M = V(1 − mA/mM

√
1 − 2δ/(µv2

M))

v′A = V(1 +

√
1 − 2δ/(µv2

M)). (2.2)

Here, V = mMvM/M is the center of mass velocity. Figure 8.3 shows the result of molecular dy-
namics simulations where we study the energy loss of the molecule E(M)

loss = E(M)
kin − (1/2)mMv′2M for

different mass ratios and laser parameters as in Fig. 8.2. In the figure, the dashed and continuous
lines correspond to pure sympathetic cooling and the predictions of Eqs. (2.2), respectively, while
squares and dots are numerical results for different values of E(M)

kin , averaged over 200 simulations.
For mA < mM the dominant energy loss mechanism is sympathetic cooling. However, for mA > mM

the energy loss of the molecule is mainly caused by dissipative collisional cooling, and is of the or-
der of δ, as expected. The effective atomic mass may be tuned using external confining potentials,
e.g., optical lattices. For example, atoms can be confined in an optical trap with depth Vtr & 2mAV2,
which for NaH with vM =

√
3kBT/mM and T = 0.5 mK and Cs atoms with mA/mM ≈ 5.5 implies

Vtr > 0.78kBT ≈ 0.4 mK.

2.5 Conclusion

In conclusion, we have discussed a scenario where a molecule scatters successively from cold (station-
ary) atoms in designed elastic and inelastic processes. In this situation reminiscent of a “microscopic
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Figure 2.3. Energy loss vs mass ratio mA/mM . The dashed red and solid black lines are
analytic results for a model of sympathetic cooling only (δ = 0) and finite δ, respectively, see
Eqs. (2.2) and text. Blue dots and squares are averages over 200 runs of molecular dynamics
simulations for finite δ, for laser parameters as in Fig. 8.2.

version of a pinball machine”, inelastic scattering events are associated with the emission of a photon
implying a “collisional Sisyphus” cooling. While we focused on the simplest possible setup based on
Van der Waals interactions, variants based on, e.g. dipole-dipole interactions and low dimensional
trapping geometries seem possible. We will investigate the role of many-atom interactions in the
dynamics of the gas in future work.

Note

In the final stages of work we became aware of S.D. Huber and H.P. Büchler’s proposal for Doppler
cooling of polar molecules, where atomic Rydberg excitations serve as a bath for rotational molecular
excitations [18].
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2.A Non-adiabatic transition

We calculate the classical trajectory by µr̈cl = −∇V1(rcl). Plugging the trajectory into the Schrödinger
equations governing the dynamics of internal states and calculating the transition probabilities after
the molecule has reached the falt region. The results are shown in the Fig.-S2.4, with laser parameters
as in Fig. 2. p1 is the computed transition probability from |1(r)〉 to the BO eigenstate that connect to
|r, 0〉 for r � rc, which is on the order of 10−2 for large kinetic energies Ekin ≤ 3δ. p2 is the transition



BIBLIOGRAPHY 25

p
(a) (b)

Figure 2.4. Diabatic transitions between different BO eigenstates. (a) p1 versus impact
parameter b and initial kinetic energy. (b) Transition probabilities for b = 0.

probability from |1(r)〉 to the BO eigenstate that connect to |e, 0〉 for r � r′c, which is tolerant as
discussed in the Letter. p3 is the non-adiabatic transition probability in |2(r)〉 at r′′c , which is calcu-
lated in a similar way. Note that non-adiabatic transition probability in |1(r)〉 at r′′c is not important,
since spontaneous decay almost takes place deterministically. All the non-adiabatic transitions can be
further suppressed by increasing the Rabi frequency.

Bibliography

[1] K. Ni et al., Science 322, 231 (2008); J.G. Danzl et al., Science 321, 1062 (2008).

[2] W.C. Campbell et al., Phys. Rev. Lett. 98, 213001 (2007); B. Sawyer et al., ibid. 98, 253002
(2007); S.D. Hogan, C. Seiler, and F. Merkt, ibid. 103, 123001 (2009); E. S. Shuman, J. F. Barry,
and D. DeMille, Nature 467, 820 (2010); P. C. Zieger et al., Phys. Rev. Lett. 105, 173001 (2010);
B. G. U. Englert et al., arXiv:1107.2821 (2011).

[3] R.V. Krems, Int. Rev. Phys. Chem. 24, 99 (2005); L.D. Carr et al., New J. Phys. 11, 055049
(2009); M.A. Baranov et al., submitted to Chem. Rev.

[4] P. Staanum et al., Phys. Rev. Lett. 96, 023201 (2006); N. Zahzam et al., ibid. 96, 023202 (2006);
A.O.G. Wallis and J.M. Hutson, ibid. 103, 183201 (2009); M.T. Hummon et al., ibid. 106,
053201 (2011).

[5] H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer) (1999).

[6] U. Vogl and M. Weitz, Nature 461, 70 (2009).

[7] J. Dalibard and C. Cohen-Tannoudji, J. Opt. B, 6, 2023 (1989); C. Cohen Tannoudji and
W.D. Phillips, Phys. Today 43, 33 (1990).

[8] T.F. Gallagher, Rydberg Atoms, Cambridge University Press (1994).

[9] D. Jaksch et al., Phys. Rev. Lett. 85, 2208 (2000); M.D. Lukin et al., ibid. 87, 037901 (2001);
D. Tong et al., ibid. 93, 063001 (2004); R. Heidemann et al., ibid. 99, 163601 (2007); E. Urban
et al., Nature Physics 5, 110 (2009); A. Gätan et al., ibid. 5, 115 (2009).



26 Publication: Atomic Rydberg Reservoirs for Polar Molecules

[10] M. Saffman, T.G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).

[11] H. Weimer et al., Phys. Rev. Lett. 101, 250601 (2008); N. Henkel et al., ibid. 104, 195302
(2010); D. Petrosyan et al., ibid. 107, 213601 (2011).

[12] J. Weiner et al., Rev. Mod. Phys., 71, 1 (1999); A. Micheli et al., Phys. Rev. A 76 043604
(2007); G. Pupillo et al., Phys. Rev. Lett. 104, 223002 (2010).

[13] For simplicity we do not explicitly reveal the degeneracy of the p-Rydberg-states in |r′〉.
[14] C.H. Greene, A.S. Dickinson, and H.R. Sadeghpour, Phys. Rev. Lett. 85, 2458 (2000);

S.T. Rittenhouse and H.R. Sadeghpour, ibid. 104, 243002 (2010); E. Kuznetsova, et al.,
arXiv:1105.2010 (2011).

[15] Blue shielding at r′′c can be achieved by coupling |e〉 or |g2〉 to Rydberg states that have strong
repulsive interaction with the molecule.

[16] A. Glätzle et al., unpublished.

[17] We may couple |e〉 (|g2〉) to Rydberg states |45s〉 (|44s〉) with a blue detuning 0.92∆r (0.67∆r)
and Rabi frequency 0.33∆r (0.37∆r) to engineer the blue shielding at r′′c ≈ 177 nm.
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We study the nonequilibrium many-body dynamics of a cold gas of ground-state alkali-metal
atoms weakly admixed by Rydberg states with laser light. On a timescale shorter than the life-
time of the dressed states, effective dipole-dipole or van der Waals interactions between atoms can
lead to the formation of strongly correlated phases, such as atomic crystals. Using a semiclas-
sical approach, we study the long-time dynamics where decoherence and dissipative processes
due to spontaneous emission and blackbody radiation dominate, leading to heating and melt-
ing of atomic crystals as well as particle losses. These effects can be substantially mitigated by
performing active laser cooling in the presence of atomic dressing.

3.1 Introduction

Rydberg states are highly excited electronic states of atoms and molecules with large principle quan-
tum numbers n [1–5]. The remarkable properties of Rydberg states include their size r ∼ a0n2 with

†The author of the present thesis was strongly involved in doing the calculation presented in this work and in writing
the manuscript. In particular, he derived the effective interaction potentials, derived the Fokker-Planck equation for laser
cooling of dressed atoms and did the molecular dynamics simulations.

http://journals.aps.org/pra/abstract/10.1103/PhysRevA.86.043403
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a0 the Bohr radius, implying huge polarizabilities α ∼ n7 and large electric dipole moments between
Rydberg states, and thus strong coupling to external electric dc and microwave ac fields. Rydberg
states can be excited from atomic or molecular ground-states by laser light via absorption of one
or more photons, with Rabi frequencies scaling as ∼ n−3/2. On the other hand, Rydberg states are
long-lived, with lifetimes τ scaling as τ ∼ n3 (τ ∼ n5) for low (high) angular momentum states. For
typical present experiments with n ∼ 50 these can be as large as tens of µs. Furthermore, atoms
prepared in Rydberg states interact strongly, and these interactions can be controlled and enhanced
by external fields. In particular, the van der Waals (vdW) interaction between ns-states scales as
VVdW ∼ (ea0)4n11/r6, with e the electron charge, and can be made both attractive and repulsive. In
the presence of external dc or ac electric fields the Rydberg-Rydberg interaction is a dipolar inter-
action, Vdd ∼ (ea0n2)2/r3. The latter is both long-range and anisotropic. Additional tunability can
be achieved using, for example, Förster resonances. These phenomena have been explored in recent
experiments [6–20].

The remarkable properties of Rydberg states and the tunability and strength of interactions be-
tween Rydberg atoms are reflected in novel many-particle physics of Rydberg gases [21–31] and
provide the basis for applications in quantum information processing, for example in implementing
(fast) quantum gates [32–37]. An underlying principle is the Rydberg-blockade mechanism, as first
proposed in Refs. [32] and [33]. In the blockade regime the presence of a single atom excited to a Ry-
dberg state shifts the energy levels of the surrounding atoms within a characteristic radius rb (∼ µm),
such that the laser excitation probability to the Rydberg state for any other atom within a volume ∼ r3

b
is strongly suppressed. This excitation will be delocalized among all particles within rb, forming a
“superatom,” with a collectively enhanced Rabi frequency

√
NbΩ. Here, Nb is the number of atoms

within r3
b constituting a superatom and Ω is the single-particle Rabi frequency. Various phenomena

in the fields of many-body physics, quantum information applications, and quantum optics related to
the dipole-blockade mechanism have been discussed recently in Refs. [38–48].

Present experiments on Rydberg gases as a many-body system created by laser excitation from
BECs [49, 50], MOTs [6–18, 20, 51], atomic vapor cells [52], or optical lattices [19] have mainly
explored the frozen gas regime. This corresponds to a short-time dynamics, where the atomic motion
can be ignored and (resonant) laser excitation of the Rydberg levels leads to large Rydberg-Rydberg
interactions. In this limit atomic dissipation, for example spontaneous emission from Rydberg states,
is negligible [53] and the dynamics maps to effective spin models, described by Hamiltonian dynam-
ics [21, 23, 30, 54].

An alternative regime is the Rydberg-admixed gas regime [25–28, 55]: There the idea is to admix
the strong Rydberg-Rydberg interactions by off-resonant laser light weakly to the atomic ground-
states, thus providing an effectively much smaller, but still tunable vdW or dipolar ground-state dy-
namics. That is, instead of kilodebye dipole moments of Rydberg states one obtains effective ground-
state dipoles in the range of tens of debyes [56]. Thus, kinetic energies and effective interactions
can become comparable, while at the same time spontaneous emission from the Rydberg state due to
off-resonant laser tuning is strongly reduced. This effectively extends the lifetime of the gas, making
it reminiscent of the dynamics of dipolar gases of polar molecules, as reviewed in [57–61].

An interesting question emerging from the above discussion is, whether it is possible to form
interesting condensed-matter phases with these engineered atomic dipolar gases; an example is pro-
vided by the formation of (stable) dipolar crystals of cold atomic gases in analogy to dipolar crystals
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Figure 3.1. (Color online) Sketch of the proposed setup: Rydberg-dressed ground-state
atoms confined in the x-y plane, for example by an optical lattice (not shown), are polarized
perpendicular to the plane by a dc electric field, Edc, or an ac microwave field, Emw(t). Atoms
can be in either the dressed ground-state |g̃〉 (small particles) with a dipole moment dg̃ or one
of the intermediate Rydberg states |m〉 (large particle) with a dipole moment dm (see text),
resulting in strong dipole-dipole interactions.

discussed for polar molecules [62]. In contrast to polar molecules 1 for Rydberg-admixed gases, dis-
sipation and decoherence due to spontaneous emission is non-negligible for long times, and this raises
the question of describing the long-time nonequilibrium dynamics of heating in such gases.

Understanding the long-term dynamics of Rydberg dressed atoms can also have important ap-
plications beyond many-body dynamics per se. For example, recent proposals have investigated the
possibility to efficiently couple cold atomic Rydberg gases to comparatively hot molecular ensembles
via long-range dipolar or vdW interactions in order to achieve Doppler [63] and collisional Sisyphus-
like [64] cooling schemes for molecules.

The paper is organized as follows: In Sec. 3.2 we give an overview of various atomic configu-
rations studied, identify the main questions, and summarize the main results of the paper. Technical
details of our calculations can be found in the remainder of the paper. In Sec. 7.2 we introduce
the model and the notation which we will use throughout the paper. In Sec. 3.4.1 we discuss the
Hamiltonian for a single Rydberg-dressed atom in the presence of external static and electromagnetic
fields. The interaction Hamiltonian of two Rydberg-dressed atoms in the presence of external fields
is considered in Sec. 3.4.2, where Born-Oppenheimer potentials are derived for both dc electric and
ac microwave fields. In Sec. 3.4.3 we study the validity of the 2D treatment. In Sec. 3.5 we derive
Fokker-Planck equations for laser-cooled ground-state atoms in the presence of Rydberg dressing.
We find an additional two-body diffusion term due to the interaction between two Rydberg-dressed
atoms. The dynamics of decay from the Rydberg state can be modeled by coupled Fokker-Planck
equations for atoms effectively in the dressed and laser-cooled ground-state and atoms in one of the
intermediate excited states. In Sec. 3.6.1 we study numerically spontaneous emission and blackbody
radiation of a single Rydberg dressed atom. Population of intermediate excited states after decay
from the Rydberg state will lead to a fluctuating dipole moment and heating of the motion due to
photon recoil. The case of an interacting ensemble of Rydberg dressed atoms is numerically studied
in Sec. 3.6.3. We find that the fluctuations of the dipole moment lead to strong mechanical effects and

1On relevant experimental time scales decoherence due to spontaneous emission between rotational states of polar
molecules is negligible. However, in a high temperature environment, T ∼ 1 K, blackbody radiation accounts for the
dominant heating mechanism.
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(a) (b)

Figure 3.2. (Color online) Qualitative sketch of the energy levels (black lines), lasers (thin
solid arrows) and decay paths (wiggly arrows) for (a) the dc electric field dressing scheme and
(b) the ac microwave dressing scheme. In both schemes the ground-state |g〉 is weakly dressed
with a Rydberg-state |rF〉 (|r〉) using a far detuned laser with Rabi frequency Ωr and detuning
∆r � Ωr. In the long-time limit cascaded decay from the Rydberg states |r〉, |s〉, or |rF〉 (wiggly
arrows) will populate intermediate Rydberg states |m(F)〉 due to spontaneous emission and
blackbody radiation. In panel (a) a static electric field, Edc = Fez, polarizes the atoms leading
to new Stark-split eigenstates, indicated with an index F. Both, the Rydberg state |rF〉 and
intermediate states |mF〉 will obtain an intrinsic dipole moment dr and dm, respectively (thick
arrows). In panel (b) a near resonant ac microwave field, Emw(t), with Rabi frequency Ωs

couples two Rydberg states |r〉 and |s〉 and induces an oscillating dipole moment proportional
to drs. The intermediate Rydberg states |m〉 have no dipole moment.

heating of the external motion, which strongly depends on the atomic density and the dressing scheme
used. We study numerically the effect of laser cooling and melting in the presence of an optical lattice
with the aim to extend the lifetime of the gas.

3.2 Overview of results

Before presenting a detailed discussion of the dynamics of strongly interacting Rydberg dressed
atoms, we find it worthwhile to summarize the main features of Rydberg dressing in a gas of (realis-
tic) atoms, and the resulting many-particle dynamics. The processes we summarize here are derived
in detail in Secs. 7.2 - 3.6.

Motivated by proposals for many-body physics with dipolar gases [62, 65], here we focus on
the dynamics of a Rydberg-dressed dipolar gas. We assume that the system is initially prepared in
a crystalline state, for example by preparing a Mott insulator state of atoms in an optical lattice,
and turning on adiabatically the Rydberg admixture while switching off the optical lattice, so that a
dipolar crystal is formed. Similar to the setups of self-assembled crystals for polar molecules studied
in Refs. [62, 65], we assume a two-dimensional (2D) configuration, that is, atoms are confined to
the (x − y) plane by an external optical field, for example, an optical lattice, in the z direction (see
Fig. 3.1), such that in-plane dipole-dipole interactions are purely repulsive. As explained below, this
will minimize collisional losses linked to the attractive part of dipole interactions. This analysis is
readily extended to, and actually simplified in the case of isotropic repulsive vdW interactions in three
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dimensions [66].

The main question we want to address is how heating and dissipation affect the many-body dy-
namics due to decay from the Rydberg state in the long-time limit. In fact, for times long enough,
spontaneous emission and blackbody radiation will inevitably redistribute the population from the
Rydberg state to various different excited states, which invalidates the simple two-level approxima-
tion for the internal dynamics of a single atom, mostly discussed so far [21–31]. Given the fact that
atoms in these other excited states can interact very differently from those prepared in the dressed
ground-state, for example they can have different dipole moments, decay from the Rydberg state can
lead to strong mechanical effects and collisional losses in an ensemble of interacting Rydberg dressed
atoms. In the following we investigate this complex many-body dynamics. In particular, we explore
how to mitigate and control these effects using laser cooling or in-plane optical lattices for a realistic
scenario where each atom comprises a large number of internal states.

3.2.1 Atomic configuration

The atomic configurations we have in mind are summarized in Fig. 3.2. (i) In panel (a) a dc electric
field with strength F polarizes each atom by splitting its energy levels into the Stark structure; the
new Stark-split Rydberg state |rF〉 obtains an intrinsic dipole moment dr which can be either parallel
or antiparallel with respect to the external field. (ii) in panel (b) an ac (microwave) field of Rabi
frequency Ωs is used to strongly couple two Rydberg states |r〉 and |s〉, which induces an oscillating
dipole proportional to the transition dipole moment drs.

In both configurations of Fig. 3.2 we weakly admix the ground-state |g〉 of each atom with the Ry-
dberg state |rF〉 or |r〉, respectively, using an off-resonant continuous wave laser with Rabi frequency
Ωr and detuning ∆r � Ωr. This immediately results in an effective dipole moment dg̃ ∼ (Ωr/2∆r)2d0
into the dressed ground-state |g̃〉 ∼ |g〉 + (Ωr/2∆r)|r〉, which can be tuned using the laser parameters
(see Sec. 3.4). Here, d0 = dr or d0 = drs for dc electric fields or ac microwave fields, respectively (see
Sec. 3.4.2). This dressed ground-state |g̃〉 has now a finite, albeit comparatively long, lifetime ∼ 1/Γg̃,
where Γg̃ ∼ (Ωr/2∆r)2Γr with Γr the decay rate of the Rydberg state.

For time scales which are comparable to, or even larger than, 1/Γg̃ population in each of the
Rydberg states |rF〉 or |r〉 and |s〉 will be redistributed due to spontaneous emission and blackbody
radiation among several excited states |m〉. In the long-time limit, after, for example, a spontaneous
emission event from the Rydberg states, the atomic state will in general not return to the ground-state
directly, but via a cascade process where several |m〉-states are populated. Since each |m〉 state has a
finite lifetime, the cascade will not happen instantaneously. Population of these intermediate states
can induce strong mechanical effects on the gas dynamics, leading to heating and losses, as explained
below in Sec. 3.6. It turns out that these effects depend crucially on how the dipole moment d0 in the
Rydberg states is created [see Figs. 3.2(a) and 3.2(b)].

We analyze these effects in detail by performing semiclassical molecular dynamics simulations
for an ensemble of interacting Rydberg-dressed atoms confined to a 2D geometry including a large
number of internal states. In Figs. 3.3(a) and 3.3(b), we provide representative examples for the cases
(i) and (ii) above, respectively, for a system comprising N = 67 atoms in a box with hard walls.
The external dynamics is treated classically, while quantum jumps from the Rydberg state account
for spontaneous emission and blackbody radiation, leading to a time-dependent dipole moment of
the atoms. In the simulation we use model-atoms with several thousands of internal electronic states
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Figure 3.3. (Color online) Single trajectory of a semiclassical molecular dynamics simu-
lation studying the nonequilibrium and melting dynamics of a 2D Rydberg-dressed crystal as
a function of time t. Heating due to decay from the Rydberg states and population of inter-
mediate states |m(F)〉 leads to a rapid increase of the mean kinetic energy, Ekin(t) (solid line,
left axis) and a reduction of the particle number due to losses (dotted line, right axis). In
panel (a) the dipole moment in the Rydberg state is created using the dc electric field dressing
scheme of Sec. 3.2.2 and the same atomic parameters as given there. Initially we choose a
density n2D = 1 µm−2. Two insets show histograms of the momentum distribution at t = 27 µs
and t = 40 µs. In panel (b) the dipole moment in the Rydberg state is created using the ac
microwave dressing scheme of Sec. 3.2.3 with the same atomic parameters as given in the text.
The initial density is n2D = 0.2 µm−2. In both panels the simulation time corresponds to the
effective lifetime of the dressed ground-state atoms, τg̃ = 125 µs or τg̃ = 12.8 ms, respectively.
The thin dashed line is the initial melting temperature, TM , of the crystal.

with the level structure and mass M of 85Rb. At time t = 0 the atoms are prepared in a triangular
crystal structure with a given density n2D (see figure caption) at zero temperature T = 0. In Fig. 3.3,
the thin dashed lines are the initial melting temperatures TM = 0.089 d2

g̃n3/2
2D /kB as determined in

Ref. [67], with kB Boltzmann’s constant. The solid (blue) and dotted (green) lines correspond to the
mean atomic kinetic energy Ekin(t) and the total atom number N(t), respectively, plotted as a function
of time t. In each plot, the simulation time corresponds to 1/Γg̃, for the given choice of parameters.

3.2.2 Rydberg dressing with a dc electric field

Figure 3.3(a) shows an example where we choose a very strong dc field with strength F = 3 kV/cm
in order to polarize 85Rb atoms. Such a high electric field is motivated by studying mixtures of polar
molecules and Rydberg atoms where both species are polarized by the same field [68]. In order to
avoid, for example, field-ionization with threshold scaling as Fion ∼ n−4, the choice of Rydberg states
is thus limited to those with a low principal quantum number, for example n ∼ 16. Here, we use
|r〉 = |16d,m = 0〉, with lifetime τr ∼ 5.5 µs and field-induced dipole moment dr ∼ 680 D. We choose
a dressing laser with Ωr/∆r = 0.42, resulting in dg̃ ∼ 30 D and a lifetime τg̃ ∼ 125 µs. Note that in
the long run blackbody radiation can lead to population of Rydberg states with n > 18, which will
eventually be field-ionized with ionization rates ∼ 1 kHz calculated in Ref. [69]. Since we are only
interested in the dynamics happening in a duration of one effective lifetime of the Rydberg dressed
atom, which is smaller compared to the blackbody-induced ionization time, we neglect any ionization
effects.
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Figure 3.3(a) shows that Ekin(t) (blue thick solid line) rapidly increases and exceeds TM after
about 10 µs. This is due to spontaneous emission events, and the ensuing population of various
|m〉 states, which have different dipole moments [see also scheme in Fig. 3.2(a)]. The population of
these intermediate states leads to a picture of fluctuating dipoles, where the energy of local crystal
distortions due to dipole-dipole interactions is rapidly redistributed among all particles as heat. The
corresponding momentum distribution of the atoms is shown in the first inset. The heating effect from
the fluctuating dipole moments is dominant over single-particle recoil effects (with a characteristic
rate of a few hundreds of kHz/ms, as discussed in Sec.3.6.1 below).

In addition, the solid (blue) line in panel (a) of Fig. 3.3 shows rapid large variations, or “spikes,”
of Ekin, for example at t ∼ 40 µs, which correspond to rare events, where one of the atoms populates a
|m〉 state with either a large dipole moment parallel to the dc electric field and long lifetime resulting
in a strong repulsive interaction, or an anti-parallel dipole moment resulting in strong in-plane dipolar
attraction. This out-of-equilibrium situation is reflected in a temporary change in the distribution
of momenta of the atoms, as shown in the second inset by the appearance of small peaks at high
momenta. Such rare events result in collisional losses of the most energetic particles, similar to a
filtering process, as well as small local “explosions,” where a large number of particles can be lost.

The heating and loss processes described above are interaction-dependent (since the interaction
strength scales as ∼ n3/2

2D ) and thus decrease considerably for a smaller atomic density. In Sec. 3.6.3
below we show how active laser cooling and an additional in-plane optical lattice can affect these
processes.

3.2.3 Rydberg dressing with a ac microwave field

In Fig. 3.3(b) we choose a resonant ac microwave field to couple the Rydberg states |r〉 = |50s〉 and
|s〉 = |49p〉 [see level scheme of Fig. 3.2(b)], which have a transition dipole moment of drs ∼ 5.9 kD.
A dressing laser with Ωr/∆r = 0.14 yields dressed ground-states atoms with dg̃ ∼ 30 D and τg̃ ∼ 12.8
ms. The comparatively long lifetime is due to the choice of a state with a larger principal quantum
number n ∼ 50. The microwave dressing can enhance photoionization effects by mixing the s states
with the p state. In the following we do not include this in our studies as it can be suppressed by
cooling to temperatures in the tens of µK-regime or also by choosing a higher-lying Rydberg state
[70]. Since F = 0 intermediate Rydberg states |m〉 have essentially no dipole moment and we consider
them as non-interacting.

Figure 3.3(b) shows that Ekin(t) increases with t. This is again due to fluctuations of the atomic
dipole moment between the value dg̃ and zero, corresponding to the atom being in the dressed ground-
state |g̃〉 or in one of the intermediate states |m〉, respectively, together with photon recoil after a decay
event. As discussed before, heating comes from the redistribution of the energy associated to local
crystal distortions due to dipole fluctuations among all particles. For t . 1.5 ms the Rydberg dressed
atoms are in a crystal-like phase, with Ekin(t) < kBTM.

In comparison with the dc electric field case of Fig. 3.3(a) the heating rate Ekin(τg̃)γg̃ of the ac
microwave-dressing scheme is approximately one order of magnitude smaller while the particle loss
rate N(τg̃)γg̃ is approximately equal. This is because the initial density is smaller and the intermediate
states have negligible dipole moments for ac microwave scheme.

In the remainder of this work we derive a microscopic model for the long-time heating dynamics
of Rydberg dressed atoms and discuss quantitatively the dependence of the heating and particle loss
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rates on the system parameters, for example, the atomic density. We state under what conditions stan-
dard laser cooling can be performed in the presence of Rydberg dressing, and numerically investigate
how it counters heating effects.

3.3 The model

The purpose of this section is to introduce the physical model and the notation that we use throughout
the paper. The system is illustrated in Fig. 3.1: N identical (alkali-metal) atoms with momenta
pi at positions ri (1 ≤ i ≤ N) are confined to a quasi-2D geometry in the (x-y) plane by a strong
confinement along the z axis.

The Hamiltonian dynamics of the system is governed by

H =

N∑
i=1

H(i) +

N∑
i< j

H(i j)
int , (3.1)

which consists of a sum over single-particle terms H(i) (see Sec. 3.4) and two-particle interaction
terms,

H(i j)
int =

d̂i · d̂ j − 3(d̂i · r̂)(d̂ j · r̂)
4πε0r3 , (3.2)

which account for the dipole-dipole interaction between two atoms. Here, r = ri − r j = r̂ r is the
relative distance between the atoms, d̂i is the dipole operator of the ith atom, and ε0 is the vacuum
permittivity.

3.3.1 Internal level structure and setup

We denote |α〉 = |nα, `α, jα,mα〉 and ~ωα = Enα`α jα as the unperturbed eigenfunctions and eigenener-
gies, respectively, of the atomic Hamiltonian Hat. Here, nα is the principal quantum number, `α is the
orbital angular momentum, jα is the total angular momentum and mα is projection of the total angular
momentum along a specified axis.

In this manifold of states we focus on three specific states (see Fig. 3.4): (i) the energetic ground-
state of the atom denoted by |g〉 (All internal energies will be measured relative to the energy of this
state, for example ~ωg = 0.), (ii) a highly excited Rydberg states |r〉 with energy ~ωr and (iii) a lower-
lying excited state |e〉with energy ~ωe � ~ωr, which will be utilized for laser cooling. All other states
|α〉 can be occupied via spontaneous emission or blackbody radiation from the high-lying Rydberg
states. As we have already mentioned in Sec. 3.2, the ground-state of each atom is off-resonantly
coupled to a high-lying Rydberg state |r〉 using a continuous-wave laser with a Rabi frequency Ωr and
detuning ∆r(� Ωr) (see Fig. 3.4). Typically, in alkali-metal-atom experiments, the atoms are excited
to the Rydberg state via two-photon transitions in which ∆r and Ωr are the effective detuning and Rabi
frequency. In addition, we use a laser field with Rabi frequency Ωe and detuning ∆e to couple |g〉 to a
nearby excited state |e〉 (~ωe � ~ωr), forming a closed cycle for laser cooling.

Besides the general setup described above, we consider two different scenarios to create a strong
dipole moment in the Rydberg state. (i) An homogeneous electric dc field of strength F polarizes
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the atoms perpendicular to the 2D plane by splitting the energy levels into the Stark structure [see
Fig. 3.4(a)]. The new Stark-split eigenstates |αF〉 obtain a large intrinsic dipole moment, for exam-
ple d0 = 〈rF |d̂|rF〉. (ii) a resonant microwave field with Rabi frequency Ωs couples |r〉 to a nearby
Rydberg state |s〉. Thereby, the atom acquires a large oscillating dipole moment proportional to the
transition dipole moment d0 = 〈r|d̂|s〉. In both scenarios, the dipole moments can be as large as
kilodebyes. The corresponding dipole-dipole interaction between two atoms in the Rydberg states is
governed by Hint of Eq. (3.2).

3.3.2 Master equation dynamics

The dynamics of the driven-dissipative many-body system made of interacting Rydberg-dressed atoms
is described by the master equation

ρ̇ = −i
[
H, ρ

]
+Lρ, (3.3)

where the system density operator ρ acts on the Hilbert space of both internal |α1, α2, . . . αN〉 and
external {(r1, p1), . . . (rN , pN)} degrees of freedom. This equation is readily written as an extension
of the familiar master equations of laser cooling for multi-level atoms including interaction between
atoms [71, 72]. We denote L as the Lindblad operator, accounting for the decoherence due to sponta-
neous emission and blackbody radiation

Lρ =

N∑
i=1

∑
α,β

ΓαβD(i)
αβρ, (3.4)

which results from the coupling between the atomic system and the vacuum modes of the electro-
magnetic field, which have been adiabatically eliminated. The decay rate from state |α〉 to |β〉,

Γαβ = Γ
(SE)
αβ + Γ

(BBR)
αβ , (3.5)

is obtained as the sum of respective contributions from spontaneous emission (SE) and blackbody
radiation (BBR) [73], with

Γ
(BBR)
αβ = n̄αβ(T )Aαβ, (3.6a)

Γ
(SE)
αβ =

{
Aαβ, ωα > ωβ;
0, ωα 6 ωβ.

(3.6b)

Here, Aαβ is the Einstein A coefficient and n̄αβ is the photon distribution, with

Aαβ =
|ωα − ωβ|3
3c3π~ε0

| 〈α|d̂|β〉 |2, (3.7a)

n̄αβ(T ) =
1

e~|ωα−ωβ |/kBT − 1
, (3.7b)

respectively. We use the notation

D(i)
αβρ =

∫
d2k̂Nαβ(k̂)e−ikαβk̂·riσ(i)

βαρσ
(i)
αβe

ikαβk̂·ri

− 1
2
σ(i)
ααρ −

1
2
ρσ(i)

αα

(3.8)



36 Publication: Driven-dissipative dynamics

(a) (b)

Figure 3.4. (Color online) Energies ωα, states |α〉 (solid black lines), lasers (solid arrows)
and decay paths (wiggly arrows) for (a) the dc electric field and (b) the ac microwave dressing
scheme. Additionally to Fig. 3.2 a lower-lying excited state |e〉 is coupled in both schemes
to the ground-state |g〉 using a near-resonant laser with Rabi frequency Ωe. State |e〉 decays
directly to the ground-state with a rate Γe yielding a closed cycle for laser cooling. Cascaded
decay from the Rydberg states |r〉, |rF〉 and |s〉 (not shown) will populate intermediate Rydberg
states |m(F)〉 and |m′(F)〉 according to the decay rates Γαβ (see text).

to denote a general Lindblad term accounting for population redistribution from level |αi〉 to |βi〉 of
the i-th atom (1 6 i 6 N) with σ(i)

αβ = |αi〉〈βi|. With Nαβ(k̂) we denote the angular distribution of

SE from level α to β, which we assume to be a normalized and even function. The terms e±ikαβk̂·ri

describe the recoil of the atom due to a spontaneously emitted photon, where kαβ = (ωα − ωβ)/c is
the wave number of the corresponding transition, with c the speed of light and k̂ a unit vector in the
direction of SE.

3.4 Hamiltonian dynamics

We now turn to analyze the single-particle and two-particle-interaction Hamiltonians of Eq. (3.1).
In particular, we derive the effective Born-Oppeheimer (BO) potential surfaces for two interacting
Rydberg-dressed atoms in the presence of either a dc electric-field (Sec. 3.4.2) or an ac microwave-
field (Sec. 3.4.2).

3.4.1 Single-particle Hamiltonian

The single-particle Hamiltonian H(i) of Eq. (3.1) consists of five terms

H(i)(t) =
p̂2

i

2M
+ H(i)

at + H(i)
dc + H(i)

laser(t) + H(i)
trap. (3.9)



3.4. Hamiltonian dynamics 37

The first term in Eq. (3.9) accounts for the kinetic energy of the i-th atom with mass M. The second
term

H(i)
at =

∑
α

~ωασ
(i)
αα, (3.10)

accounts for the internal atomic energy levels, in the absence of external fields. The third term in
Eq. (3.9) reads

H(i)
dc = −d̂(i) · Edc = −d̂(i)

z F, (3.11)

and describes the interaction of an atom with a static electric field, where d̂(i) is the atomic dipole
operator of the i-th atom. The effect of a static electric field Edc = Fez is to polarize the atoms along
the field direction ez, by splitting the energies into the Stark structure [74], with F the strength of the
field. The new Stark-split eigenstates |αF〉 have an intrinsic dipole moment, which in the linear Stark
regime is approximately given by dα = (3/2)ea0nα(n1 − n2) with a0 Bohr’s radius and n1 and n2 the
parabolic quantum numbers of state |αF〉. In this regime the energy levels are shifted proportional to
the field strength, for example ∆Eα = dαF. Coupling between adjacent n-manifolds can be neglected
for field strength F < FIT, where FIT ∼ n−5 is the Inglis-Teller-limit [1].

The term H(i)
laser in Eq. (3.9) describes the interaction of an atom with (for example, microwave or

optical) laser fields and consists of three terms

H(i)
laser(t) = H(i)

eg−laser(t) + H(i)
rg−laser(t) + H(i)

sr−laser(t), (3.12)

where each term has the form

H(i)
αβ−laser(t) =

~Ωα

2
σ(i)
βαe−i(kLαri−ωLαt) + H.c.. (3.13)

Here kLα = ωLα/c is the wave-number of the laser with ωLα the frequency of the laser, H.c. denotes
the Hermitian conjugate, and Ωα is the Rabi frequency. The first term H(i)

eg−laser in Eq. (3.12) describes
the coupling of the atom to the cooling laser on the (|g(F)〉-|e(F)〉) transition, with Rabi frequency
Ωe and frequency ωLe detuned by ∆e. The term H(i)

rg−laser describes the coupling of the atom to the
Rydberg-dressing laser on the (|g(F)〉-|r(F)〉) transition, with Rabi frequency Ωr and a frequency ωLr

detuned by ∆r. In the following we are interested in the regime of large detuning ∆r � Ωr in order
to weakly admix the Rydberg state to the ground-state. Finally, H(i)

sr−laser describes the coupling to
a microwave field strongly mixing the Rydberg-states |r〉 and |s〉, with Rabi frequency Ωs and laser
frequency ωLs detuned by ∆s.

In addition H(i)
trap of Eq. (3.9) accounts for external trapping potentials.

3.4.2 Two-particle Hamiltonian: Born-Oppenheimer potentials

In this section we study the interaction between two Rydberg dressed atoms in the presence of an
external static electric field (Sec. 3.4.2) or a microwave field (Sec. 3.4.2). For relative distances
between the atoms larger than the size of the Rydberg atom r ∼ a0n2

r and in the presence of external
fields the atoms interact via dipole-dipole interaction governed by the Hamiltonian of Eq. (3.2). In
particular, we derive the BO potential surfaces which, in the adiabatic approximation, play the role of
effective interaction potentials [62] [Eqs. (3.18) and (3.28)]. They form the basis for the analysis of
the time-dependent dynamics of Rydberg-dressed atoms which we discuss below in Secs. 3.6 and 3.5.
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dc electric field

We consider two atoms in the presence of a static dc field of strength F, driven by the Rydberg-
dressing laser, in the configuration of Fig. 3.4(b). The microwave and the cooling laser are absent,
that is, Ωe = Ωs = 0. The new Stark-split eigenstates |gF〉 ∼ |g〉 and |rF〉 are obtained by diagonalizing
Hat + Hdc and the detuning of the dressing laser ∆r is defined relative to the shifted energy levels. To
obtain the BO potentials we first neglect dissipation and treat the position operators r̂i as parameters
ri. Within this limit each atom can be described by a two-state model consisting of |g〉 and |rF〉,
coupled by a dressing laser. This is valid for distances larger than rn ∼ (D/∆En)1/3, where diabatic
crossings between BO surfaces of neighboring n manifolds can be neglected. Here, D = d2

0/(4πε0) is
the dipolar coupling strength and ∆En � ~∆r is the energy separation between neighboring states. In
a rotating frame the single-particle Hamiltonian describing this model system reduces to

H(i) = −~∆rσ
(i)
rr +
~Ωr

2
(σ(i)

rg + σ(i)
gr), (3.14)

where the operatorσ(i)
αβ = |αF〉 〈βF | acts on the new Stark-split eigenstates, i ∈ {1, 2}, and ∆r = ωLr−ωr

is the detuning from the (|rF〉 − |g〉) resonance. Position-dependent phases of Eq. (3.13) are included
in Sec. 3.5, where they lead to recoil kicks from laser absorption, SE, BBR, and Doppler shifts.

Since the dc electric field aligns the dipoles of the atoms along the direction of the field and the
dominant dipole moment is d0 = 〈rF |d̂|rF〉, the interaction term in Eq. (3.2) is

H(i j)
int =

D(1 − 3 cos2 ϑ)
|ri − r j|3

[
σ(i)

rr ⊗ σ( j)
rr

]
, (3.15)

where ϑ is the angle between the dipole axis and the radial vector between two atoms. When the
atoms are confined in a 2D plane, for example by a strong optical field, the angle is fixed to ϑ = π/2,
resulting in a purely repulsive interaction. Within this model, the total Hamiltonian [Eq. (3.1)] for
two atoms in the basis {|g, g〉 , |rF , g〉 , |g, rF〉 , |rF , rF〉} reads as

H = ~


0 1

2Ωr
1
2Ωr 0

1
2Ωr −∆r 0 1

2Ωr
1
2Ωr 0 −∆r

1
2Ωr

0 1
2Ωr

1
2Ωr V(r) − 2∆r


, (3.16)

with

~V(r) = 〈rF , rF |H(12)
int |rF , rF〉 =

D
r3 . (3.17)

The BO potentials for the scattering of two Rydberg-dressed atoms are obtained by diagonalizing
the Hamiltonian of Eq. (3.16) for fixed relative position and zero kinetic energy (see Fig. 3.5). We
assume that the linewidths of the corresponding states are smaller than the energy separation between
them, and that the relevant kinetic energies are small enough, such that Landau-Zener transitions
between different BO surfaces can be neglected (secular approximation). In this case the resulting
position-dependent eigenvalues act as potentials in each state manifold [62, 75]. Asymptotically (for
example, at large distances where the dipole interaction is negligible), the new dressed eigenstates are
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Figure 3.5. (Color online) Energy eigenvalues E(r) (dressed BO potential surfaces) of
Rydberg-dressed atoms confined in a 2D geometry obtained by diagonalizing the Hamiltonian
of Eq. (3.16). Here, r = r(cosϕ, sinϕ, 0) is the 2D coordinate in the plane with z = 0. Atoms
are polarized by the dc electric field dressing scheme of Sec. 3.4.2 and ∆r = 2Ωr. Energy
surfaces are labeled using arrows: Eg̃g̃ (solid line), Eg̃r̃+r̃g̃ (dash-dotted line) and Er̃r̃ (dashed
line). At the Condon point r = rc an avoided crossing leads to a rapid change of the ground-
state interaction potential Eg̃g̃: For r > rc atoms prepared in the dressed ground-state |g̃〉 are
weakly interacting, Eg̃g̃ ∼ (Ωr/2∆r)4d2

0/r
3, while for r < rc the potential inherits the character

of the Rydberg-Rydberg interaction, Eg̃g̃ ∼ d2
0/r

3.

|g̃〉 = |g〉 + (Ωr/2∆r) |rF〉 and |r̃F〉 = |rF〉 − (Ωr/2∆r) |g〉. We note that the dynamics governed by the
Hamiltonian of Eq. (3.16) for atoms initially in the ground-state is restricted to the symmetric sub-
space made of the three states which asymptotically connect to the states |g̃, g̃〉, (|r̃F , g̃〉+ |g̃, r̃F〉)/

√
2,

and |r̃F , r̃F〉, with energies slightly perturbed by the (Rydberg-dressing) laser field; the antisymmetric
state (|r̃F , g̃〉 − |g̃, r̃F〉)/

√
2 is decoupled and does not contribute to the dynamics.

In the following, we focus on blue detuning, for example ∆r > 0. Figure 3.5 shows the BO
potentials as a function of the interparticle distance r for a specific choice of parameters. Because
of the choice of blue-detuning, the figure shows that the ground-state BO potential Eg̃g̃ (solid line)
corresponding to the energy of the two-particle asymptotically in the state |g̃, g̃〉 has the highest energy.
The energy of this BO potential can be calculated perturbatively up to fourth order in the small
parameter Ωr � |V(r) − 2∆r | as

Eg̃g̃(r) =
Ω2

r

2∆r
− Ω4

r

4∆3
r
− Ω4

r

4∆2
r (V − 2∆r)

(3.18a)

≈ Ω2
r

2∆r
− Ω4

r

8∆3
r

+

(
Ωr

2∆r

)4

V(r). (3.18b)

where the second line is valid in the limit V(r) � ∆r, that is, r � rc (see below). While the first
two terms on the right-hand side of Eq. (3.18) are simple light shifts, the equation shows that at
large distances the effective ground-state BO potential has an effective spatial dependence Vg̃g̃(r) =

(Ωr/∆r)4d2
r /r

3. As explained in Refs. [25–28, 55], this means that by dressing the particles with the
laser field we have achieved a dipole-dipole interaction for atoms prepared in their (dressed) ground-
state, and the strength of the interaction is tunable by varying the ratio Ωr/∆r.

Figure 3.5 shows that the energy of the dressed two-particle ground-state state Eg̃g̃ (solid line)
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is strongly affected by the dipole-dipole interactions, and for V(r) ∼ 2∆ avoided crossings occur
among the BO potentials of all symmetric states. Note that the energy of the antisymmetric state
(|r̃F g̃F〉 − |g̃F r̃F〉)/

√
2 is uncoupled and not shown. In particular, there is a resonant Condon point at

rc =

 d2
0

8πε0~∆r

1/3

(3.19)

between the ground-state BO potential and other energy surfaces. As a consequence, there is a sud-
den change in the slope of the energy surface for r ∼ rc, where the ground-state BO potential inherits
the character of the one that asymptotically connects to the energy of the state |r̃F , r̃F〉, and becomes
strongly repulsive. This effect has been discussed in Refs. [62, 66, 75] in the context of so-called blue-
shielding techniques, where the strong repulsion for r < rc does not allow for particles to come close
to each other in a scattering event, thus preventing collisional losses due to, for example, collision-
induced ionization at short distance. In the reminder of this work, we will be mostly interested in
confining the dynamics to distances r > rc.

ac microwave-field

In this section we consider the Hamiltonian dynamics of two atoms in the presence of a linearly
polarized, near-resonant microwave field with Rabi frequency Ωs coupling the Rydberg states |r〉 and
|s〉 [see Fig. 3.4(b)]. The ground-state is again weakly dressed with the state |r〉 using an off-resonant
laser with Rabi frequency Ωr and a large detuning ∆r � Ωr. The dc electric field and the cooling
laser are absent, that is, Ωe = 0 and F = 0. The explicit choice of a near-resonant microwave field
is to obtain large dipoles for atoms in the dressed ground-state, which scale as ∼ (Ωr/∆r)2, similar
to the dc electric field case of Sec. 3.4.2. Again neglecting dissipation and the external degrees of
freedom for a moment we are left with a three-level system consisting of the ground-state |g〉 and the
two Rydberg states |r〉 and |s〉. Since the electric dc field is absent, these states are the bare eigenstates
of Hat. Below we show that, by a judicious choice of systems parameters, it is possible to obtain an
interaction strength and Condon radius of similar magnitude as in the previous scheme of Sec. 3.4.2
above.

In a frame rotating with the laser frequencies the single-particle Hamiltonian of Eq. (3.1) for this
model system reduces to

H(i) = − ~∆rσ
(i)
rr − ~(∆r + ∆s)σ

(i)
ss

+
~Ωr

2
(σ(i)

rg + σ(i)
gr) +

~Ωs

2
(σ(i)

sr + σ(i)
rs ),

(3.20)

where the operator σ(i)
αβ = |α〉 〈β| acts on the bare eigenstates, i ∈ {1, 2}, and ∆s = ωLs − ωs is the

detuning of the microwave laser from the (|r〉 − |s〉) resonance. The corresponding dipole-dipole
interaction Hamiltonian of Eq. (3.2) reduces to

H(i j)
int =

d2
0

4πε0

1 − 3 cos2 ϑ

|ri − r j|3
[
σ(i)

srσ
( j)
rs + σ(i)

rsσ
( j)
sr

]
, (3.21)

with ϑ defined as before.
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Figure 3.6. (Color online) Illustration of the ac microwave dressing scheme. (Left) Energies
ωα, states |α〉 (solid lines), and lasers (solid arrows) of the system described by the Hamil-
tonian of Eq. (4.7). The unitary transformation Urs of Eq. (3.22) diagonalizes the Rydberg
subspace {|r〉, |s〉}. (Right) In a rotating frame the new states |+〉 and |−〉 with energies E± are
separated by an energy difference

√
Ω2

s + ∆2
s and individually coupled to the ground-state with

Rabi frequencies Ω± according to the Hamiltonian of Eq. (3.25) .

In the case of a near-resonant microwave field, where ∆s � Ωs, it is convenient to perform a
unitary transformation [76]

U(i)
rs = exp

{
1
2

tan−1
(
Ωs

∆s

) (
σ(i)

rs − σ(i)
sr

)}
, (3.22)

which diagonalizes the Hamiltonian in the subspace {|r〉i , |s〉i}. The corresponding new eigenstates
are |±〉i = a∓ |s〉i ± a± |r〉i, with

a± =
1√
2

1 ± ∆s√
∆2

s + Ω2
s

1/2

, (3.23)

with the corresponding eigenenergies,

E± = −∆r − 1
2

(
∆s ∓

√
∆2

s + Ω2
s

)
. (3.24)

After the transformation, the single-particle Hamiltonian of Eq. (4.7) in the basis {|g〉 , |+〉 , |−〉} is

U(i)
rs H(i)U(i)†

rs = ~


0 1

2Ω+ −1
2Ω−

1
2Ω+ E+ 0
− 1

2Ω− 0 E−

 , (3.25)

with the effective Rabi frequencies Ω± = a±Ωr. In this transformed picture the new eigenstates
|±〉 are coupled to the ground-state by lasers with Rabi frequencies Ω± and have a dipole moment
d± = 〈±|d̂|±〉 = ±〈r|d̂|s〉 = ±d0, (see Fig. 3.6).

Again, the dynamics of the symmetric and antisymmetric states are decoupled. For two particles
the dynamics of the symmetric subspace is governed by the Hamiltonian H = H(1) + H(2) + H(12)

int ,
which, represented in the basis {|g, g〉, 1√

2
(|g,+〉+|+, g〉), 1√

2
(|g,−〉+|−, g〉), 1√

2
(|−,−〉+|+,+〉), 1√

2
(|+,−〉+
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Figure 3.7. (Color online) (a) Energy eigenvalues E(r) (dressed BO potential surfaces) of
Rydberg-dressed atoms confined in a 2D geometry obtained by diagonalizing the Hamiltonian
of Eq. (3.26). Here, r = r(cosϕ, sinϕ, 0) is the 2D coordinate in the plane with z = 0. Atoms
are polarized by the ac microwave dressing scheme of Sec. 3.4.2 and ∆r = 4Ωr, Ωs = 1.5∆r

and ∆s = 0. Energy surfaces are labeled using arrows. The energies EMW
++ (r) and EMW

−− (r)
are strongly affected by the dipole interaction and at the Condon point rMW

c = g(α)rc an
avoided crossing leads to a rapid change of the ground-state interaction potential EMW

g̃g̃ (r)
(thick line): For r > rc atoms prepared in the dressed ground-state |g̃〉 are weakly interact-
ing, EMW

g̃g̃ ∼ f (α)(Ωr/2∆r)4d2
0/r

3, while for r < rc the potential inherits the character of the
Rydberg-Rydberg interaction, EMW

g̃g̃ ∼ d2
0/r

3. The figure shows that the Condon radius is
slightly shifted to larger values compared to the dc dressing scheme of Fig. 3.5. Panel (b)
shows the dependence of the interaction strength, f (α) (solid line), and the Condon radius,
g(α) (dashed line), defined in Eq. (3.28) on α. There exists a region ∆α where f (α) > 1 and
g(α) < 1.5.

|−,+〉), 1√
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Hsym = ~



0 Ωr
2 −Ωr

2 0 0 0
Ωr
2 −∆r +

Ωs
2 0 Ωr

2
√

2
− Ωr

2
√

2
− Ωr

2
√

2
−Ωr

2 0 −∆r − Ωs
2 − Ωr

2
√

2
Ωr

2
√

2
− Ωr

2
√

2
0 Ωr

2
√

2
− Ωr

2
√

2
−2∆r 0 −Ωs

0 − Ωr

2
√

2
Ωr

2
√

2
0 −2∆r 0

0 − Ωr

2
√

2
− Ωr

2
√

2
−Ωs 0 V − 2∆r


, (3.26)

where we assumed exact resonance of the microwave field, that is, ∆s = 0.

The BO potentials are obtained by diagonalizing the Hamiltonian Hsym, leading to the new dressed
eigenstates which parametrically depend on r. An analytic expression for the BO potential of two
atoms in the dressed ground-state can be obtained perturbatively in the limit Ωr � {∆r,Ωs}

EMW
gg =

2∆rΩ
2
r

4∆2
r −Ω2

s

1 − Ω2
r (4∆2

r + 3Ω2
s)(

4∆2
r −Ω2

s

)2 − Ω2
r [Ω4

s − 16∆4
r − (4∆2

r + 3Ω2
s)(Ω2

s − 4∆2
r )](

4∆2
r −Ω2

s

)2
(2V∆r − 4∆2

r + Ω2
s)

 . (3.27)

Note, that there are two resonances at ∆r = Ωs/2 and 2V(rMW
c )∆r − 4∆2

r + Ω2
s = 0. The first one

corresponds to the level crossing between the states |g−〉 and |−−〉 (red detuning) or |g+〉 and |++〉
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(blue detuning) with the two-particle ground-state |gg〉. The second one corresponds to a Condon
point rMW

c , similar to the one we have discussed before for the dc electric field case.

We now focus on the case Ωs/2 . ∆r in which the single-particle |+〉-state with energy E+ '
−∆r + 1

2Ωs ≈ −ε (0 < ε � ∆r) gets almost degenerates with the ground-state |g〉, while the state
|−〉 with energy E− ' −∆r − 1

2Ωs ≈ −2∆r is separated by a large energy gap of 2∆r. In order to
investigate the behavior of Eq. (4.9) near this resonance we set Ωs = α2∆r with α < 1 − Ωr/∆r. The
latter inequality comes from the fact that we assume Ωr is the smallest frequency scale for the non-
degenerate perturbation theory to be valid. Therefore, these two states must not be exactly degenerate.
With this assumption we find for the ground-state energy and the Condon radius

EMW
gg = Econst. + f (α)

(
Ωr

2∆r

)4

V(r),

rMW
c = g(α)

3

√
d2

0

8πε0~∆r
,

(3.28)

with Econst. = Ω2
r/[2∆r(1 − α2)] − Ω4

r (1 + α2)/[8∆3
r (1 − α2)3], f (α) = 2α2/(1 − α2)4 and g(α) =

1/(1 − α2)1/3. In the limit α→ 0 the state |s〉 is not coupled to |r〉 and we obtain the same light shifts
as in Eq. (3.18). Note that in this limit the interaction strength vanishes, f (α)→ 0. This is due to the
fact that in the absence of a dc electric field the bare state |r〉 has no intrinsic dipole moment.

Figure 3.7(a) shows the BO potentials for the symmetric states as a function of the interparticle
distance r for a specific set of parameters near resonance, as discussed above. The energy of the
dressed two-particle states |−−〉 and |++〉 is strongly shifted by the dipole-dipole interaction, and
avoided crossings occur among the BO potentials of all symmetric states. This leads to a sudden
change in the slope of the energy surface of, for example Egg, at the Condon radius rMW

c .

The functions f (α) and g(α) versus α are shown in Fig. 3.7(b). Increasing α towards 1 will on one
hand increase the effective ground-state interaction potential according to f (α). On the other hand it
will increase the Condon radius rMW

c according to g(α). Figure 3.7(b) shows that there is a region,
∆α, for which f (α) > 1 but 1 < g(α) < 1.5 between 0.45 < α < 0.84. Operating in this region leads
to formal similar interaction strength and Condon radii as for the dc electric field dressing scheme,
for example, Eqs. (3.18) and (6.15).

3.4.3 Validity of the 2D treatment

In this section we examine in detail under what criteria we can treat the system of interacting Rydberg
dressed atoms as purely 2D in nature. As mentioned before, the atoms are trapped in the (x − y)
plane by a strong harmonic confinement along the z direction. The resulting 3D potential in relative
coordinates reads

V3D(r) =
1
4

Mω2
⊥z2 + ~Egg(r), (3.29)

where the first term is the harmonic confinement with trapping frequency ω⊥. The second term,
Egg(r), is the BO potential of two interacting dressed ground-state atoms, obtained by numerically
diagonalizing the Hamiltonian of (3.16), taking into account the full 3D characteristic of the dipole-
dipole interactions.
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Figure 3.8. (Color online) Contour plots of the 3D-potentials V3D(r) and Vmol
3D (r)

of Eq. (3.29) and (3.30) are shown in panels (a) and (b), respectively, in units of V0 =

2∆r (Ωr/2∆r)4. Here, r = (ρ cosϕ, ρ sinϕ, z) is the relative distance between two atoms, with
ρ the in-plane radial coordinate and z the transversal coordinate. Brighter regions represent
stronger repulsive interactions. Two saddle points (circles) located at (ρ?,±z?) separate the
repulsive from the attractive short-range region.

Figure 3.8(a) shows a contour plot of the 3D potential V3D(r) of Eq. (3.29) in the (ρ-z) plane where
ρ =

√
x2 + y2. We consider 85Rb atoms with ∆r = 2π × 250 MHz, Ωr = 2π × 100 MHz, rc = 520 nm

and ω⊥ = 2π × 200 kHz. In the figure, darker color corresponds to deeper potentials. The potential
exhibits two saddle points, at (ρ?, z?) = (0.78,±0.39) rc, with a height V3D(ρ?, z?) = 220 µK · kB,
which serve as an energy barrier separating the repulsive long-range dipole-dipole interaction regime
from an attractive short-distance regime [62, 65]. For relative kinetic energies smaller than the height
of the potential barrier, the interaction is purely repulsive and the system can be stabilized against
collapse due to the attractive part of the interaction. For blue detuning of the dressing laser there is
a resonant Condon point at ρ = rc for z = 0, where we observe a rapid increase of the interaction
potential, which is discussed in Sec. 3.4.2. Along the axial direction z (for ρ = 0) there is no resonant
point and the potential approaches smoothly zero where inelastic or reactive collisions will occur.

For relative distances larger than the Condon radius, rc [Eq. (6.15)], the interaction can be ap-
proximated by dipole-dipole interaction. In this case, the 3D potential can be rewritten as

Vmol
3D (r) = V0

[
κz̃2 +

ρ̃2 − 2z̃2

(ρ̃2 + z̃2)5/2

]
, (3.30)

which is reminiscent of polar molecules [62, 65]. Here, z̃ = z/rc and ρ̃ = (x2 + y2)1/2/rc. The
corresponding contour plot is shown in Fig. 3.8(b). The dimensionless parameter κ characterizes the
strength of the confinement relative to the interaction

κ =

(
2∆r

Ωr

)4 Mω2⊥r2
c

8~∆r
= 2

(
∆r

Ωr

)3
ω⊥
Ωr

(
rc

aho

)2

, (3.31)

where aho =
√
~/Mω⊥ is the harmonic oscillator length in transversal direction. For κ � 1 the

confinement in the z direction dominates over the dipole-dipole interaction. Analytic analysis of
Eq. (3.30) yields the saddle points

ρ? = ±2z? and z? =
31/5
√

5κ1/5
. (3.32)
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The height of the potential at the saddle point, corresponding to the height of the energy barrier
separating the repulsive region from the attractive region, is

Vmol
3D (z?, ρ?) = V0

(
κ

3

)3/5
, (3.33)

which is independent of ∆r for a fixed ratio of Ωr/∆r. For the same parameters used above we obtain
κ = 30 which yields a potential barrier at the saddle point corresponding to T? = 150 µK. Comparing
Figs. 3.8(a) and 3.8(b) one can see the rapid change of the interaction strength at the Condon radius
for Eq. (3.29) [panel (a)] leads to a repulsive shield which leads to a slightly higher potential barrier
corresponding to T? = 220 µK compared to the case of a pure inverse-cubic interaction potential
[panel (b)] with T? = 150 µK. Additionally, we find that the saddle point in panel (a) is shifted to
larger ρ values than in panel (b).

In a 3D scenario two particles undergo collapse when they have large-enough collisional energy
to overcome the energy barrier at the saddle points. In the numerical simulations of Sec. 3.6 we treat
the system as purely 2D with a 1/r3 potential [see Eq. (3.42)], assuming particles are being lost if
they collapse in 3D. For a specific set of parameters we use the latter analysis to calculate the height
of the potential at the saddle point, V3D(ρ?, z?), in a 3D scenario. The height of the saddle point will
then be translated into a critical 2D distance, ρloss, at which Eg̃g̃(ρloss) = V3D(ρ?, z?), with Eg̃g̃ defined
in Eq. (3.18b).

3.5 Laser cooling of dressed Rydberg atoms

In this section we examine in detail the dissipative processes in Eq. (3.3) and study laser cooling of
interacting atoms in the presence of Rydberg dressing. As an example we consider Doppler cooling
but the model can be extended to sub-Doppler cooling schemes. For simplicity of the analytic treat-
ment in Sec. 3.5.1, we first consider model atoms where we neglect decay from the Rydberg state
in order to derive semiclassical Fokker-Planck equations which describe the cooling dynamics in the
presence of Rydberg-dressing and interactions. In Sec. 3.5.2 we include decay from the Rydberg state
which couples the dressed ground-state via rate equations to one of the intermediate states. Again for
simplicity of the analytic treatment in this section, we first consider model atoms with a single inter-
mediate state |m〉. In Sec. 3.6 we numerically investigate the interplay of laser cooling and heating
due to population of intermediate states of an ensemble of dressed Rydberg atoms taking into account
a large number of internal states. We show that laser cooling can alleviate the heating dynamics for
interacting Rydberg atoms described above, extending the lifetime of strongly interacting phases in
these systems, as for self-assembled crystals.

3.5.1 Fokker-Planck equation

In the following we derive equations of motion for the external dynamics (position and momentum)
of model atoms consisting of a ground-state |g〉 which is coupled with a far detuned laser to a Ry-
dberg state |r〉 with Rabi frequency Ωr and detuning ∆r � Ωr. Additionally, the ground-state |g〉 is
coupled to a lower-lying excited state |e〉 using a counter-propagating laser with Rabi frequency Ωe

and detuning ∆e. The state |e〉 decays directly to the ground-state |g〉 with a fast decay rate Γe, real-
izing a closed cycle transition. Atoms which are both in the Rydberg state interact via dipole-dipole
interaction described by the Hamiltonian Eq. (3.15).
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The derivation of equations of motion for the external degrees of freedom is done in four steps
[72, 77]: (i) first we use the Wigner function formalism to map the density operator ρ onto a quasi-
probability distribution in phase space

W(N)(r1, . . . , rN ; p1, . . . ,pN ; t) =∫
du1

h3 , . . . ,
duN

h3 〈r1 +
u1
2 , . . . , rN +

uN
2 |ρ|r1 − u1

2 , . . . , rN − uN
2 〉 e−iu1·p1/~, . . . , e−iuN ·pN/~. (3.34)

(ii) We derive the equation of motion for W using the master equation Eq. (3.3) and expand the
resulting equation of motion up to second order in terms of the photon momentum in order to obtain
a positive probability function in the semiclassical limit. (iii) We adiabatically eliminate the Rydberg
state |r〉 in the limit of a large detuning ∆r. The resulting two-level systems - consisting of a dressed
ground-state |g̃〉 = |g〉 + (Ωr/2∆r)|r〉 with dipole moment dg̃ and an excited state |e〉 - interact only
when the atoms are in the dressed ground-state. (iv) Finally, we adiabatically eliminate the fast
internal degrees of freedom of this effective two-level system in favor of the (much slower) external
dynamics. Due to the Rabi oscillations between the dressed ground-state |g̃〉 (with dipole moment
dg̃) and the lower-lying excited state |e〉 (with negligible dipole moment) the dipole of the atom is
fluctuating in time. This leads to an additional diffusion term in the equation of motion in addition to
the standard Doppler-cooling diffusion terms. After a lengthy calculation one obtains for two atoms
in their dressed ground-state, W(2)

g̃g̃ = 〈g̃g̃|W |g̃g̃〉, the equation of motion

 ∂∂t
+

2∑
i=1

pi

M
∂

∂ri

 W(2)
g̃g̃ =

2∑
i=1

[
∂

∂pi
fc +D(i)

1

]
W(2)

g̃g̃ − f12 ·
(
∂

∂p1
− ∂

∂p2

)
W (2)

g̃g̃ +D12W (2)
g̃g̃ , (3.35)

which is valid when ∆r � Ωr,Ωe,Γe � ~k2
eg/m, where keg is the wave number of the (|e〉-|g〉)

transition. Additional to the free motion term on the left-hand side, the first term on the right-hand
side describes single-particle Doppler cooling with the cooling force fc = β k̂Le kLe · p and the
standard diffusion operator D1 =

∑
k Dk∂

2
pk

accounting for SE and diffusion due to the cooling laser
in various spatial directions k ∈ {x, y, z} [77]. Here we assumed two counter-propagating laser beams
and expanded the resulting radiation pressure forces up to second order in kLe. The third term of
Eq. (3.35) proportional to

f12 =
Ω4

r

4∆2
r (V − 2∆r)2

∂V
∂r1

= −∂Eg̃g̃

∂r1
(3.36)

accounts for the interaction between the two atoms. We note that this term can be rewritten, using the
potential of the dressed ground-state [Eq. (3.18)] obtained in Sec. 3.4.2. Besides those standard laser
cooling terms, [72, 77], the term

D12 =
4Ω2

eΓe

(Γ2
e + 4∆2

e)2

[
f12 ·

(
∂

∂p1
− ∂

∂p2

)]2

(3.37)

is a two-body diffusion term which accounts for the fluctuations of the force (which is present only in
the dressed ground-state), due to Rabi-oscillations between |e〉 and |g̃〉. For near-resonant laser light
it is proportional to the population and lifetime of the excited state. In the limit f12 � ~ΓekLe this
diffusion term is small compared to the single-particle diffusion terms and one can approximate the
system with two interacting atom, which are independently laser-cooled.
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3.5.2 Quantum jumps and rate equations

A quantum jump occurs when the atom in the Rydberg state |r〉 decays to an intermediate state |m〉
due to SE or BBR. In the following, we allow for the possibility that the intermediate state |m〉 is long-
lived, with a lifetime ∼ 1/Γmg comparable with the external dynamics and thus cannot be adiabatically
eliminated. This will lead to two coupled equations of motion: (i) an equation for laser-cooled atoms
in the dressed ground-state, with dipole moment dg̃ = (Ωr/2∆r)2dr, and (ii) an equation of motion
for atoms in the |m〉 state (and possibly with a dipole moment dm), which do not experience a cooling
force.

To simplify the notation for the analytic treatment, we consider only a single atom in the pres-
ence of the cooling and dressing lasers. The generalization to two atoms is straightforward. After
preforming steps (i)-(iv) of the latter section we find the following coupled FPEs for the dynamics of
the dressed ground-state |g̃〉 and the intermediate state |m〉:(

∂

∂t
+

p
M
· ∂
∂r

)
W (1)

g̃ = − Γg̃W (1)
g̃ + (Γm +Dmg)W(1)

m +

[
∂

∂p
· fc +D1

]
W (1)

g̃ , (3.38a)(
∂

∂t
+

p
M
· ∂
∂r

)
W (1)

m = − ΓmW (1)
m +

Γg̃ +

(
Ωr

2∆r

)2

Drm

 W (1)
g̃ , (3.38b)

where W (1)
α = 〈α|W(1)|α〉 is the single-particle Wigner function for the atom in state |α〉 (α ∈ {g̃,m}).

The equations are coupled by the effective ground-state decay rate

Γg̃ =

(
Ωr

2∆r

)2

Γrm (3.39)

due to optical pumping via the Rydberg state |r〉. The termsDαβ are standard diffusion operators [77]
accounting for SE from state |α〉 to |β〉.

3.6 Dissipative dynamics of dressed Rydberg atoms

We now analyze numerically the dissipative processes of Eq. (3.3), which are associated with the
finite lifetime of excited Rydberg states. In Sec. 3.6.1 below, we consider the case of a single atom, in
which we investigate the population of intermediate states due to SE or BBR. As a consequence, the
atom acquires a time-dependent dipole moment. In addition, SE and BBR act as small heating sources
due to the photon recoil. In Sec. 3.6.2 we summarize our previous discussion of the driven-dissipative
dynamics of laser-cooled and interacting Rydberg-dressed atoms as a prescription for a molecular
dynamics simulation. The effect of population in intermediate states will be more substantial in the
case of an ensemble of Rydberg-dressed atoms, as we discuss in Sec. 3.6.3. In particular, we find
that the dominant heating effect originates from the time-dependent dipole moment which induces
strong mechanical effects in the many-body system. A crucial point is that the time dependence of
the dipole moment exhibits characteristically different behavior in the dc electric field case compared
to the ac microwave one. For example, in the case of a static electric field (F > 0) the states |αF〉 can
have large parallel or antiparallel dipoles, dα = 〈αF |d̂|αF〉, on the order of kilodebye, causing strong
dipole-dipole interactions with other Rydberg-dressed atoms, whereas in the case of a ac microwave
field (and no dc electric field) the intermediate states do not have any dipole moment.
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Figure 3.9. (Color online) Relative decay rates Γr,n`/Γr of the |r〉 = |16 d5/2, m j = −5/2〉
state of 85Rb. Green (dark gray) and gray (light gray) bars indicate decay rates to |np〉- and
|n f 〉-states, respectively. In both cases we summed over j and m j. The top and bottom panels
show the relative decay rates for T = 0 K and T = 300 K, respectively. The total decay rate of
Γ16d = 2π× 51 kHz (43 kHz) for T = 300 K (T = 0) agrees well with calculations carried out
in [73]. Note that in the top and bottom panels the y axes are cut at 5 % and 10 %, respectively.
For states with a higher decay rate percentage numbers on the left side of the bars indicate
their value.

3.6.1 Decoherence of a single atom

The dressed ground-state |g̃〉 has a finite lifetime τg̃ = Γ−1
g̃ , where Γg̃ = (Ωr/2∆r)2Γr, and 1/Γr is

the lifetime of the Rydberg state. The latter is, in general, given by BBR and SE, which redistribute
population from the |r〉 (|rF〉) state to all possible intermediate states |m〉. Such a decay event from the
Rydberg state is followed by a cascade process where several intermediate states |m〉 can be populated.
It is crucial to note that the cascade process in general does not happen instantaneously, due to the
finite lifetime of the intermediate states. As we discuss below, this has far-reaching consequences in
the long-time dynamics of Rydberg-dressed crystals.

We calculated the decay constants Γαβ given in Eqs. (3.6a) and (3.6b) numerically using both
quantum defect theory [78–80] and a model potential method [81]. With the first method we calcu-
lated the decay matrix including all angular momentum states up to n = 18, while with the second
method we obtained the decay matrix up to n = 110 including s, p, d, f , and g angular momentum
states. With Γα =

∑
β Γαβ we denote the total decay rate of the state |α〉 and Γ0 ≡ Γg̃ = (Ωr/2∆r)2Γr =

(Ωr/2∆r)2 ∑
β Γrβ is the effective decay rate of the dressed ground-state. Figure 3.9 shows the branch-

ing ratio of decay in the absence of external fields from the |16d〉 state to |np〉 and |n f 〉 states, where
we summed over j and m j levels. For T = 0 K (top panel) the only contribution to the decay rate
comes from SE, which favors decay to low-lying states. About 60 % of the population in the |16d〉
state decays to the |5p〉 state. The bottom panel of Fig. 3.9 shows the branching ratio for T = 300 K.
In this case the decay rate is determined not only by SE but also by BBR, which in addition leads to
substantial decay to neighboring states. Hence, only 51 % of the population in the |16d〉 states decays
directly to the |5p〉 state. From this it is clear that in current cold-atom experiments performed in
room-temperature environments the role of high-lying intermediate states cannot be neglected in the
long-time limit.

The internal dynamics corresponding to a cascade process of the electron towards the ground-state
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Figure 3.10. (Color online) Stark map: Atomic energy levels Eα(F) of 85Rb as a function of
the field strength F around the state |16d,m = 0〉. Note that we plot only states with magnetic
quantum number m = 0. States with an angular quantum number ` > 3 have a negligible
quantum defect and show a linear Stark effect, while s, p and d states show a quadratic. The
energy of the state which for F → 0 connects to |16d,m = 0〉 (thick line) is well separated in
energy from neighboring states up to a field strength of F ≈ 300 kV/m.

following a decay event vim the Rydberg states is given by

d
dt


p0
p1
p2
...

 =


−Γ0 Γ10 Γ20
Γ01 −Γ1 Γ21 . . .

Γ02 Γ12 −Γ2
...




p0
p1
p2
...

 , (3.40)

where pα is the probability of being in the state |α(F)〉 in the absence (presence) of a static electric
field, F = 0 (F > 0). Note that in the case of a dc electric field (F > 0) the decay rates ΓαFβF are a
sum of several decay rates between bare states, Γαβ, according to the contributions of various different
angular momentum states to the Stark split states |αF〉 and |βF〉.

dc electric field: The Stark structure of atomic states (including only m = 0 states) is shown in
Fig. 3.10 for a electric field along ez. States with an angular momentum ` > 3 are almost degenerate
and exhibit a linear Stark effect, while lower angular momentum states, which have a larger quantum
defect which breaks the degeneracy, exhibit a quadratic Stark shift. Figure 3.10 shows that the |16d〉
state (thick line) is well separated from the neighboring states by an energy gap of ∼ 200 GHz up
to a field strength of F ∼ 3 kV/cm and experiences a strong energy shift, corresponding to a large
dipole moment. For an electric field Edc = F ez only m = 0 states are coupled and the resulting dipole
moments are polarized along the direction of the external field. Figure 3.11 shows the z component
of the dipole moment, dα, for different states |αF〉 and a field strength of F = 3 kV/cm. The figure
shows that states |αF〉 gain a large dipole moment of hundreds of debyes which can be positive and
negative. The dipole moment of the state which for F → 0 connects to |16d,m = 0〉 is about 680 D.

The time evolution of Eq. (3.40) is readily simulated. We prepare the atom in the dressed ground-
state |g̃〉, that is pg̃ = p0 = 1. After a time step ∆t much smaller than the time scales associated with
the decay rates a random number determines if and to which internal state |α(F)〉 the atom makes a
transition (quantum jump) according to the rates of Eq. (3.40). During each time step the dipole mo-
ment d(t) of the atom is equal to the dipole moment of the current state, dα(F) . This new configuration
then again propagated another time step ∆t.
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Figure 3.11. (Color online) Electric dipole moment dα = 〈αF |d̂z|αF〉 of the Stark split states
|αF〉 of a 85Rb atom in an electric dc field with strength F = 3 kV/cm. States are numbered with
increasing energy, for example the state |16d,m = 0〉 corresponds to α = 1017. The figure
shows that depending on the state the dipole moment dα can be positive (parallel) or negative
(antiparallel) leading to a repulsive or attractive interaction.

Figure 3.12(a) shows an example result for the time evolution of the atomic dipole moment d(t)
of a 85Rb atoms polarized by a dc electric field with strength F = 3 kV/cm. The ground-state is
coupled to the Rydberg state |rF〉, which in the absence of a dc electric field (F = 0) connects to the
|r〉 = |16d,m = 0〉 state using a Rydberg-laser with (Ωr/2∆r) = 0.21. We initially prepare the atom
in the dressed ground-state |g̃F〉, and compute the time evolution using Eq. (3.40). The trajectory in
Fig. 3.12(a) shows a typical result for the deviation of the atomic dipole from the dipole moment of
the dressed ground-state dg̃ = 30 Debye as a function of time t, in units of the ground-state life-
time τg̃ = 125 µs. The figure shows large positive and negative spikes for the values of d, followed
by long times where the system is in the dressed ground-state, with dipole moment dg̃. The large
“spikes” correspond to the population of intermediate states |αF〉, during the cascade process towards
the ground-state, following a SE event. These large positive and negative fluctuations of d(t) will
cause strong dipole-dipole interactions and hence large mechanical effects when a gas of interacting
Rydberg atoms is considered.

Microwave dressing and F=0: In this case we couple the ground-state |5s〉 of Rubidium to the state
|17s〉 using a laser with (Ωr/2∆r)2 = 0.05. An additional microwave field couples the states |17s〉
and |17p〉 such that the dressed ground-state obtains a dipole moment of dg̃ = 30 Debye. The solid
(blue) trajectory in Fig. 3.12(b) shows a typical trajectory for the time evolution of the dipole moment
as a function of time in units of τg̃ = 90 µs. For this dressing scheme the intermediate states |m〉
do not possess a dipole, and thus the dipole fluctuates between long periods when it has the value
dg̃, corresponding to the atom in the dressed ground-state, to periods where the atom has no dipole,
corresponding to the cascade processes following SE, like a “blinking dipole”.

In comparison, in the dc electric field case [solid trajectory in panel (a)] the dipole fluctuations
are much larger and can take both positive and negative values, whereas in the microwave case [red
trajectory in panel (b)] the dipoles fluctuate between zero and dg̃.

In the following we examine the external dynamics of a single atom. It is dominated by small
momentum fluctuations associated with the photon recoil following a series of cascade decay events.
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(a) (b)

Figure 3.12. (Color online) Time evolution of the atomic dipole moment d(t) according to
population of various internal states governed by Eq. (3.40) for a 85Rb atom. In panel (a) the
atom is polarized using the dc electric field dressing scheme while in panel (b) it is polarized
with the ac microwave dressing scheme using the same parameters as given in Sec. 3.6.1.
In both cases the dipole moment of the dressed ground-state is dg̃ = 30 D. In the case of
the dc electric field dressing scheme [panel (a)] the dipole moment fluctuates between large
positive and negative values due to population of intermediate states, while in the case of the
ac microwave dressing scheme [panel (b)] the dipole moment jumps between d(t) = 0 and
d(t) = 30 D.

As an example, we simulate heating due to decay from the |r〉 = |16d〉 state using the same parameters
as before. The result of a molecular dynamics simulation is shown in Fig. 3.13, where we plot single
kinetic energy trajectories as a function of time (thin black lines). We propagate the internal dynamics
according to Eq. (3.40). Each decay event is associated with a momentum kick in a random direction
corresponding to the transition (see next section). It is shown in the figure that as time progresses
the kinetic energy increases due to photon recoils. We perform a statistical average over 50 runs of
simulations (thick line) which yields an average heating rate of 2π × 106.3 kHz/ms. It will be shown
below that for high enough densities this single-particle heating rate is much smaller than the heating
rate due to interactions associated with fluctuations of the dipole moment in the many-body case, as
discussed in the next section.

3.6.2 Molecular dynamics simulation

In our semiclassical description the state of each atom at time t is specified by {ri(t),pi(t), αi}, where
ri(t) and pi(t) are the center-of-mass coordinate and momentum of the i-th atom, respectively, and
α ∈ {g̃,m,m′, . . .} denotes the internal electronic state with i = 1, . . . ,N. The internal state is either the
ground-state |g̃〉, dressed by the admixure of the Rydberg state, and the excited state |e〉 from the laser
cooling (see Fig. 3.4), or one of the many intermediate states |m〉 populated during a decay cascade
back to the ground-state. The dynamics of the gas is described by a set of coupled equations, as written
for the case of one or two atoms in Eqs. (3.38) and (3.35), respectively. These results can be general-
ized immediately to N atoms. Mathematically, they are a set of coupled Fokker-Planck equations for
the external motion and rate equations for the internal electronic states, describing a combined dif-
fusive and jump Markov process for the probability density W (N)(r1,p1, α1; . . . , rN ,pN , αN ; t). This
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Figure 3.13. (Color online) Single kinetic energy trajectories, Ekin, as a function of time t
for a single Rydberg-dressed 85Rb atom (thin black lines). We observe an increase in kinetic
energy due to photon recoil due to decay events from the Rydberg state. The thick line is a
linear fit of 50 single trajectories which gives a mean heating rate of 2π × 106.3 kHz/ms.

stochastic process is readily simulated.

Consider atom i, which we assume to be in the dressed ground-state |g̃〉. Its center-of-mass motion
obeys the Langevin equations

ṙi =
pi

M
, (3.41a)

ṗi =
∑
j,i

f( ji)
int − βpi + f(i)

ex + F(i), (3.41b)

where on the right-hand side of Eq. (3.41b) we sum over the forces from all the other ground-state
atoms, as well as the forces from atoms in one of the intermediate states |m〉, with

f( ji)
int (t) = −dαidα j

4πε0

∂

∂ri

1
|ri − r j|3

. (3.42)

Here, dαi = dg̃ is the effective dipole moment of the dressed ground-state [see Eqs. (3.18) and (3.28)
for the dc and ac field cases, respectively] and dα j can either be equal to dg̃ if the j-th atom is in the
dressed ground-state |g̃ j〉 or equal to dm if the j-th atom is in the state |m〉. In the dc electric field
case dm = 〈mF |d|mF〉, while in the ac microwave field case dm = 0 (see Sec. 3.6.1). In addition, we
have added in Eq. (3.41b) the familiar terms describing possible laser cooling [77], and an external
trapping force f(i)

ex . The last term in Eq. (3.41b) is a stochastic force [82] from quantum fluctuations
due to the recoil of SE events from both the Rydberg state repopulating the ground-state, but also
from laser cooling, obeying

〈F(i)
k (t)F( j)

l (t′)〉 = Dkδklδi jδ(t − t′), (3.43)

with k, l ∈ {x, y, z} and i, j ∈ 1, . . . ,N and Dk the diffusion coefficients of Eq. (3.35). We make the
simplifying assumption that the cross-noise term of Eq. (3.37) arising from the fluctuating ground-
state dipole due to laser cooling discussed in Sec. 3.5 is negligible.
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Similarly, atom i in one of the intermediate states |m〉 obeys the equation of motion

ṙi =
pi

M
, ṗi =

∑
j,i

f( ji)
int , (3.44)

where again f( ji)
int are the forces of Eq. (3.42) and dαi = dm. Note that atoms in one of the (intermediate)

Rydberg states |m〉 are assumed to be neither trapped, f(i)
ex = 0, nor laser-cooled, β = 0.

Optical pumping from |g̃〉 to one of the intermediate states |m〉 and the following cascaded decay,
|g̃〉 → |m〉 → . . . → |m′〉 → |g̃〉, back to the dressed ground-state will redistribute the atomic popu-
lations according to the rate equations (3.40). We can simulate this many-body dynamics by starting
with a given atomic configuration, and propagating Eqs. (3.41) and (3.44) for a time step ∆t, much
smaller than the time scales corresponding to the above mentioned rates. We then determine the prob-
abilities for atom i in state αi to make a transition (jump) to another internal state according to the
rate equations (3.40) for optical pumping and decay, and pick a new configuration according to these
probabilities. Each cascade of quantum jump is associated with momentum kicks ~krm, ..., ~km′g in
random spatial directions according to the distribution Nαβ of Eq. (3.8) and with kαβ the wavevector
of the corresponding transition. This new configuration is then again propagated for another time step
according to Eqs. (3.41) and (3.44).

Due to the population of intermediate states in the long-time limit and the resulting time-dependent
dipole moments we expect a rapid heating caused by fluctuations of the interaction force described
above. In addition, we also expect atomic losses. For example, when a ground-state atom collides
with an atom in an intermediate |α〉 state with a large dipole moment the kinetic energy released in
the collision can (i) be of the order of the height of the saddle point (see Sec. 3.4.3). In this case
the atoms will overcome the potential barrier and experience an attractive interaction. Alternatively,
(ii) the energy released can be of the order of the depth of external confinement in the transversal
direction. A third loss mechanism is be Penning ionization at distances smaller than 4n2a0 [83–85].
Each of these processes leads to two-body or one-body losses. In the simulations, we utilize a model
including two-particle losses, where two particles are lost whenever their relative distance r becomes
smaller than a certain critical radius rloss (see Sec. 3.4.3).

3.6.3 Effects of decoherence on the dynamics of many interacting Rydberg atoms

In this section we numerically investigate the effects of SE and BBR on the long-time dynamics of an
ensemble of interacting Rydberg atoms by performing semiclassical molecular dynamics simulations.
As discussed above, the population of intermediate states |m〉 with different interaction properties, for
example, different dipole moments, will lead to strong fluctuations of the interparticle forces in the
many-body case.

Using semiclassical molecular dynamics simulations we study the resulting nonequilibrium dy-
namics of an ensemble constitution of N = 67 Rydberg-dressed 85Rb atoms. Initially they are pre-
pared in a perfect triangular crystal in a box with hard walls at T = 0. For both dressing schemes
we choose system parameters such that the ground-state dipole moment is dg̃ = 30 D, corresponding
to a melting temperature of TM = 0.6 µK (2π× 12 kHz) for n2D = 1 µm−2. Additionally, the effect
of laser cooling and a triangular in-plane optical lattice is analyzed in order to stabilize the atomic
crystal. Note that we assume that only dressed ground-state atoms experience both the cooling laser
and the lattice with a depth of 50 ER, with ER = 2π× 3.8 kHz, while atoms in one of the intermediate
states |m〉 do not [see Eqs. (3.41) and (3.44)].
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Figure 3.14. (Color online) dc electric field case: We numerically investigate the heating
rate (top panel) and the remaining particle number after a time τg̃ = 125 µs (bottom panel)
as a function of the density n2D for different laser cooling parameters β and lattice depths V0.
Parameters see text.

dc electric field dressing

Figure 3.14 analyzes heating in a gas of Rydberg dressed atoms using the dc electric field scheme of
Fig. 3.4(b) with the same parameters as in Sec. 3.2.2. For ∆r = 2π × 250 MHz the Condon point is at
rc ∼ 520 nm. For a transversal trapping frequency of ω⊥ = 2π × 200 kHz the height of the potential
barrier at the saddle point is ∼ 150 µK. Each marker in Fig. 3.14 is an average over 50 runs of the
simulation, where we simulated the dynamics for a time τg̃.

Figure 3.14(a) shows the heating rate, γg̃Ekin(t = τg̃) as a function of the atomic density for
different cooling and lattice parameters, with Ekin(t) the mean kinetic energy of all N atoms. In the
case of no laser cooling, β = 0, there is a strong dependence of the heating rate on the density,
while for a cooling rate of β = 2π × 30 kHz the heating rate is almost zero and a steady state is
realized on a timescale β−1 � τg̃. This steady state is due to the interplay of laser cooling and heating
together with loss of high energy particles from the 2D confinement. This is shown in Fig. 3.14(b),
where the number of remaining particles after a time τg̃ is shown as a function of the atomic density.
Again, there is a strong dependence on the density and also on the laser cooling rate β. For densities
n2D . 0.04 µm−2 the effect of the fluctuating dipoles can be neglected on surrounding atoms, while
for densities n2D ∼ 1 µm−2 the particle number has been decreased by 3% (with cooling) or 15 %
(no cooling) after a time τg̃ = 120 µs. Similar to Fig. 3.3, we observe an accelerated loss of particles,
resulting in a dramatic decrease of the particle number for times t > τg̃. The effect of an in-plane
optical lattice is small and hardly changes the heating rate or particle number shown in Fig. 3.14.

ac microwave field dressing

Figure 3.15 shows heating dynamics in a gas of Rydberg dressed atoms using the microwave dressing
scheme of Fig. 3.4(c) with the same parameters as in Sec. 3.2.3. For ∆r = 2π × 1.0 GHz and α = 0.5
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Figure 3.15. (Color online) ac microwave field case: We numerically investigate the heating
rate (upper panel) and the remaining particle number after a time τg̃ = 12.8 ms (lower panel)
as a function of the density n2D for different laser cooling parameters β and lattice depths V0.
Parameters see text.

we find rc ∼ 1.38 µm. With ω⊥ = 2π × 100 kHz the hight of the barrier at the saddle points is
∼ 70 µK.

In our treatment, the basic heating process of a crystal comes from its spatial rearrangement, once
one of the atoms decays to an intermediate state |m〉 with zero dipole moment. We explain this as
follows: Due to the lack of dipole moment, particles in the intermediate state |m〉 can travel a distance
vR/Γm without interacting with neighboring atoms, where vR is the recoil velocity and Γm the mean
lifetime of an intermediate state. (i) if vR/Γm is of the order of the mean particle distance in the crystal
n−1/2

2D two particles will most probably come closer than the critical radius rloss and get lost. We find
that this latter process can result in an unusual collisional evaporative cooling effect. (ii) If vR/Γm is
smaller than the mean particle distance in the crystal the atom may return to the ground-state with a
finite dipole moment, resulting in large time-dependent fluctuations of the dipole-dipole interaction
between neighboring atoms. The net heating rate of the crystal is a competition between processes (i)
and (ii).

We note that accidental vdW interactions may occur between atoms in one of the intermediate
states |m〉, which may lead to additional heating. However, these processes are not considered here.

Figure 3.15(a) shows the mean heating rate, γg̃Ekin(t = τg̃) as a function of the atomic density for
different cooling and lattice parameter, with Ekin(t) the mean kinetic energy of all N atoms. Again,
each marker in Fig. 3.15 is an average over 50 runs of the simulation, where we simulated the dy-
namics for a time τg̃ = 12.8 ms. Similar as in the dc electric field case of Fig. 3.14, there is a strong
dependence of the heating rate on the density and on the laser cooling rate β, while the effect of an
in-plane optical lattice is weak. Additional laser cooling of the atoms with a rate β = 30 kHz again
leads to a steady state of the mean kinetic energy [see panel (a)] and diminishes the particle loss rate,
which is shown in Fig. 3.14(b). The number of remaining particles after a time τg̃ is shown as a func-
tion of the atomic density. Remarkably, more than 70% (50%) of the particles are left with (without)
laser cooling and densities of n2D = 0.2/µm2 after t = τg̃.



56 Publication: Driven-dissipative dynamics

3.7 Conclusions and Outlook

In this work we have investigated the long-time nonequilibrium dynamics of an ensemble of cold
ground-state atoms, weakly admixed with a Rydberg state using laser light. For times comparable
to or larger than the effective lifetime of the ground-state, the population of intermediate Rydberg
states following SE significantly affects the atomic motion in a strongly interacting gas, by providing
a dominant heating and loss mechanism. We analyzed in detail two scenarios in which the atoms have
been polarized either by an additional dc electric field or by an additional ac microwave field.

Numerical simulations indicate that, due to the absence of dipole moments in the intermediate
Rydberg states, ensembles of atoms polarized by ac microwave fields exhibit a significantly different
long-time dynamics, compared to atoms dressed by dc electric fields: In the dc field case the nonequi-
librium dynamics is followed by local explosions or implosions resulting in a large atom number loss
due to the fluctuating dipoles present in the intermediate states. In both cases, we find that the heating
and loss rates decrease quickly with a decreasing atomic density. In addition, these effects can be
substantially mitigated by performing active laser cooling in the presence of atomic dressing.

Understanding this long-time dynamics is relevant for the experimental demonstration of laser-
dressing techniques [86], as well as the creation of long-lived strongly correlated atomic phases such
as self-assembled atomic crystals. Related to recent work on mixtures of polar molecules and Rydberg
atoms [63, 64], we speculate that long-lived cold crystals may be used as cold reservoirs for achieving,
for example, sympathetic cooling of polar molecules [68].
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Rev. Lett. 99, 163601 (2007).

[13] T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat, and P. Pillet, Phys. Rev. Lett. 99, 073002
(2007).

[14] T. Amthor, M. Reetz-Lamour, S. Westermann, J. Denskat, and M. Weidemüller, Phys. Rev. Lett.
98, 023004 (2007).

[15] C. S. E. van Ditzhuijzen, A. F. Koenderink, J. Hernández, F. Robicheaux, L. Noordam, and H. B.
van den Linden van den Heuvell, Phys. Rev. Lett. 100, 243201 (2008).

[16] T. Johnson, E. Urban, T. Henage, L. Isenhower, D. Yavuz, T. Walker, and M. Saffman, Phys.
Rev. Lett. 100, 113003 (2008).

[17] J. Pritchard, D. Maxwell, A. Gauguet, K. Weatherill, M. Jones, and C. Adams, Phys. Rev. Lett.
105, 193603 (2010).
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[22] R. Löw, H. Weimer, U. Krohn, R. Heidemann, V. Bendkowsky, B. Butscher, H. Büchler, and
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Chapter 4

Additional material

Cooling and trapping of polar molecules in a bilayer configuration
using Rydberg atoms†

Note added: the following material is the basis of a preprint currently being written

4.1 Introduction

As an alternative way (compared to Chapter 2) to cool polar molecules with Rydberg atoms we aim
to understand strong, long-range dipolar interactions between hot polar molecules and a cold gas of
Rydberg atoms trapped in two separate two-dimensional layers in order to ensure collisional stability.
We show that the molecular kinetic energy can be efficiently transferred from the gas of hot molecules
to the cold atoms via the long-range interactions. Moreover, the spatial crystalline structure of the
atoms can be used to dynamically tailor the spatial structure of the molecules, which can form atom-
molecule bound states over both layer as the steady state of the cooling dynamics.

4.2 The model and energy transfer rates

The setup we have in mind is shown in Fig. 4.1: the molecular and atomic dipoles, dM and dA,
respectively, are trapped to separate two-dimensional (2D) planes (layer separation `) and polarized
perpendicular to the planes, generating intra-plane dipole-dipole interactions

VAM(r) = dAdM
r2 − 2`2

(r2 + `2)5/2 (4.1)

between atoms and molecules and inter-plane dipole-dipole interactions

Vσσ(r) =
dσdσ

r3 (4.2)

†The work presented in this outlook has been done in close collaboration with M. Baranov, G. Pupillo and P. Zoller.
The author of the present thesis did the main calculations, in particular all atomic physics calculations and the molecular
dynamics simulations.
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�

(a) (b)

r

Figure 4.1. (a) Schematics of the setup: Atoms (blue) are confined in the upper layer and
interact with molecules (red and white) in the lower layer. (b) Bilayer interaction potential
between atoms and molecules of Eq. (4.1).

between two atoms (σ = A) or two molecules (σ = M) in the same layer. Here riσ, jσ′ = |ri,A − r j,M |2.
Microscopically, interaction between atoms and molecules are induced by driving both of them with
the same AC-microwave, which drives transitions between the ro-vibrational ground state |0〉 and the
first excited rotational state |1〉 of the molecules and also between two Rydberg states |r〉 and |s〉, see
Fig. 4.2. We choose two Rydberg states such that their energy difference approximately matches the
rotational energy splitting of the molecule. This induces oscillating dipole moment d0 and dm in both,
atoms and molecules, respectively, proportional to their transition dipole moment.

We assume that the molecules and the atoms are initially in a hot and cold gas phase, respectively.
Assuming two-body collisions only, the kinetic theory of the thermal equilibration between atoms
and molecules is well captured by the following quantum Boltzmann equation (BE)

∂nM(p)
∂t

=

∫
dq dq′dp ΓAM(q′p′; qp)

{
nM(p′)1 ± nA(q)]nA(q′) − nM(p)[1 ± nA(q′)]nA(q)

}
×(2π)2δ(p + q − p′ − q′)(2π)δ(εp + εq − εp′ − εq′),

(4.3)

with nM(p) [nA(p)] the distribution function for molecules (atoms), ΓAM(|p′ − p|) ∝ |ṼAM(|p′ − p|)|2,
and ṼAM(|q|) = −2πdAdM |q|e−|q|` the Fourier transform of the inter-plane interactions. We numerically
solve the BE in the limit of a classical Boltzmann distribution for both species, by performing molecu-
lar dynamics simulations for up to a few hundred atoms and several tens of dipolar molecules. A char-
acteristic result for the energy loss of a hot molecule as a function of time is shown in Fig. 4.4(left).
The figure shows a rapid decay of the kinetic energy of the molecule, to a final situation where Ekin
fluctuates about a small value, signaling a small finite temperature.

An analytical insight into the numerical results is obtained by approximating the scattering event
as that of a fast molecule on an atom at rest, which is valid for fast-moving molecules with velocity
vM � ~

mM`
, with ` the characteristic size of the molecule-atom interaction. We estimate the average

energy loss per collision by computing the differential cross section in the first order Born approxi-
mation dσ/dθ = ṼAM(|k|)2/(8π|k|) in the small-angle limit and by averaging over angles as

−dEM

dt
= nAvM

∫
dθ

dσ
dθ
~2k2

2mA
' 3πd2

Ad2
MnA

2`5mAvM
. (4.4)

We then obtain the following estimate for the temperature decrease as a function of time t for a
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atom molecule

Figure 4.2. Internal level schemes for atoms (left) and molecules (right).

molecule scattering on a gas of (non-interacting) Rydberg atoms

EM(t)/E0 = (1 − γt)2/3 , (4.5)

with

γ =
9π

4
√

2~
nAaAaM

√
mA

mM

(
~2

mA`2

)5/2

E−3/2
0 (4.6)

the energy transfer rate, where E0 ≡ EM(t = 0) is the initial energy of the molecule and aν = mνd2
ν/(4πε0~

2)
the dipolar length. We note that γ ∼ `−5 is very sensitive to the layer separation.

4.3 Implementation using Rydberg atoms and polar molecules

4.3.1 Atomic layer

Hamiltonians

The atomic setup we have in mind is shown in Fig. 4.2. The atomic ground state |g〉 is weakly coupled
by a off-resonant laser light to one of the latter Rydberg states, inducing a tunable dipole moment in
the atomic ground state dg̃ = (Ωr/2∆r)2 d0.

We consider a model atom consisting of a ground state |g〉 and two Rydberg states |r〉 and |s〉. The
Rydberg states are coupled by a microwave field with Rabi frequency Ωs and detuning ∆s � Ωs from
the transition |r〉-|s〉, see Chapter 3for details. This induces an oscillating dipole moment proportional
to the transition dipole moment d0. With a second laser with Rabi frequency Ωr and large detuning
∆r � Ωr from the |g〉 − |r〉 transition we weakly dress the atomic ground state with the Rydberg state
|r〉. This leads to effective ground state atoms |g̃〉 = |g〉 + (Ωr/2∆r)|r〉 with a tunable dipole moment
dg̃ = (Ωr/2∆r)d0. The Hamiltonian for this model atom reduces to

H(i) = − ∆rσ
(i)
rr − (∆r + ∆s)σ

(i)
ss

+
Ωr

2
(σ(i)

rg + σ(i)
gr) +

Ωs

2
(σ(i)

sr + σ(i)
rs ),

(4.7)
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Figure 4.3. Bilayer scheme and hierarchy of length scales

where the operator σ(i)
αβ = |α〉 〈β|, i ∈ {1, 2}, and ∆s = ωLs − ωs is the detuning of the microwave laser

from the (|r〉 − |s〉)-resonance.

The interactionHamiltonian, accounting for the dipole-dipole interaction of two Rydberg-dressed
atoms separated by a distance |ri − r j|, reduces to

H(i j)
int =

d2
0

4πε0

1 − 3 cos2 ϑ

|ri − r j|3
[
σ(i)

srσ
( j)
rs + σ(i)

rsσ
( j)
sr

]
, (4.8)

where d0 = 〈s|d̂|r〉 is the transition dipole moment between the Rydberg states. With ϑ we denote
the angle between the direction of polarization and the relative position of the particles. We assume a
linear-polarized microwave field which aligns the dipoles of the atoms perpendicular to the plane and
thus ϑ = π/2 which ensures purely repulsive interactions.

In the case of a near resonant microwave field, i.e. Ωs � ∆s and a far detuned dressing laser, i.e.
Ωr � ∆r, we find for the energy of the potential surface which asymptotically connects to the energy
of both atoms in the dressed ground state

Eaa
gg =

2α2

(1 − α2)4

(
Ωr

2∆r

)4

V(r), (4.9)

where α = Ωs/2∆r and V(r) = d2
0/r

3, which is valid for distances larger than the resonant Condon
point

raa
c =

3

√
1

1 − α2

d2
0

8πε0∆r
. (4.10)

derived in Chapter 3.

For an atomic density nA with a mean inter-particle distance a = (4/3)1/4/
√

nA we have the
following hierarchy of length scales

a > raa
c > rryd and ` > aho, (4.11)

where rryd ∼ a0n2 is the size of the Rydberg atom with a0 Bohr’s radius and aho =
√
~2/2mω⊥ is the

harmonic oscillator length of the trap, illustrated in Fig. 4.3.



4.3. Implementation using Rydberg atoms and polar molecules 65

Laser cooling

In the semiclassical approximation, valid for vAΓe � λ and 2π/λ � δp with λ and δp the laser
wavelength and the momentum spread of the distribution, we can define a phase space density
u(r1,p1, r2,p2, t) = tr{W}, with W the two-particle Wigner function, for which we obtain a Fokker-
Planck equation in the low saturation limit (derivation see Chapter 3)

u̇ =
∑
i=1,2

[
−pi

m
· ∂riu + βdk̂e · ∂pi(piu) · k̂e (4.12)

+
Dd

2
(k̂e · ∂pi)

2u +
Dd

6
∂2

pi
u
]

−f12 · (∂p1 − ∂p2)u + D f12[f̂12 · (∂p1 − ∂p2)]2u

where we defined the saturation parameter s =
(

Ωe
2

)2
/
(
∆2

e +
(
γe
2

)2
)
� 1, the damping constant βd =

2sγe∆e~k2
e/

[
m

(
∆2

e +
(
γe
2

)2
)]
, the diffusion constants Dd = sγe~

2k2
e and D f12 = sγe f 2

12/
(
∆2

e +
(
γe
2

)2
)
,

and the force f12 = −f21 = −∇1Eaa
gg. Here we have neglected those terms that can be canceled when

counter-propagating lasers are applied. The first two lines in Eq. (4.12) describe standard laser cooling
of two independent atoms, where the damping terms and the diffusion terms accounts for cooling and
heating. The third line is new, where the first two terms describe the interaction force between the
two atoms and the third term is an additional cross diffusion induced by fluctuation of the force.

We use a Langevin equation to simulate the dynamics of atoms,

ṙi,α = pi,α/m,

ṗi,α = −βpi,α +
∑
j,i

fi j,α(ri j) +
∑

j

Ai jE j,α(t) (4.13)

where α = x, y, β is a damping constant, Ai j is the diffusion constant and E j,α are the fluctuation
forces with zero mean value and δ correlations in time. We assume Aii =

√
D and Ai j(i, j) =

√
Di j

with D and Di j the diffusion constants. In the current work, we assume D � Di j, so that the diffusion
caused by fluctuations of the interaction force is small. If Di j and the fi j are zero, Eq. (2) can be
used to describe cooling of independent atoms, where an effective temperature can be defined as
Teff = D/(2β). In the simulation, we first consider Eaa

gg ∼ 1/r3, which is the asymptotic form of the
realistic potential and neglect the off-diagonal diffusion terms Di j for simplicity.

Decay from Rydberg states - lifetime

The tuneability of the interaction strength, c.f. Eq. (4.9) comes with the price of a finite lifetime of
the dressed ground state atoms Γg̃ = (Ωr/2∆r)Γr. Population of intermediate states after spontaneous
emission from the Rydberg states will lead to particle loss and heating which strongly depends on the
atomic density. For a maximum density of nA . 1/(raa

c )2 the half-life was estimated about τg̃ = Γ−1
g̃ ,

which can be strongly increased by reducing the density and active laser cooling of the atoms.
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Figure 4.4. (left) kinetic energy of the molecule: Blue line is the average over 50 runs of
simulations. Thin black line is a single trajectory. Green line is the analytic result for non-
interacting atoms neglecting decay from the Rydberg states. (middle) atomic energy: Blue line
is the average over 50 runs of simulations. Thin black line is a single trajectory. Red-dashed
line is the Doppler-temperature TD and black-dashed line is the melting temperature Tmelt.
(right) Atomic density: Blue line is the average over 50 runs of simulations. Thin black line is
a single trajectory.

4.3.2 Atom-Molecule interaction:

Our starting point is the following model Hamiltonian for two species of dipoles dA and dM confined
to parallel planes separated by a distance `

H = TA + TM +
∑

i, j;σ,σ′

dσdσ′(|ri,σ − r j,σ′ |2 − 2`2)
(|ri,σ − r j,σ′ |2 + `2)5/2 . (4.14)

Here Tσ =
∑

i p2
i,σ/2mσ is the kinetic energy Hamiltonian with pi,σ (ri,σ) the momentum (position)

of the ith-dipole in the plane (σ = A,M). The latter interaction is valid for distances larger than the
atom-molecules Condon point (c.f. Fig. 4.3)

ram
c =

3

√
d0dm

4πε0∆r
, (4.15)

which must be smaller than the interlayer separation, i.e. ram
c < `.

In order to get insight into the scaling we approximate ` ∼ ram
c and

√
nA ∼ 1/raa

c and find

γ <
9π
16

21/6(4πε0)1/3 d1/3
M

dr

Ω4
r

∆
5/3
r

√
mM

mA
E−3/2

0 . (4.16)

It is worth noticing that γ ∼ 1/dr which comes from the fact that increasing dr increases the layer
separation required and decreases the maximum atomic density allowed. Since dr ∼ ea0n2 it is
favorable to use states with a low principal n quantum number in order to have a large energy transfer
rate. The inverse is true regarding the lifetime of the atomic layer which is proportional to the lifetime
of the chosen Rydberg state, i.e. τg̃ ∼ n3. We therefore have to tradeoff between 1/γ ∼ n2 < τg̃ ∼ n3

in order to cool the molecules faster than the lifetime of the atomic layer.
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4.4 Simulation results

4.4.1 Numbers

We perform a semi-classical molecular dynamics simulation for 67 atoms and one molecule in a
box with hard walls. The atomic density is nA = 2 · 1011/m2, which corresponds to a mean inter
particle separation of a = (4/3)1/4/

√
nA = 2.4 µm. The size of the Rydberg atom for n = 50 is

rryd = 3/2a0n2 = 200 nm. As an example we consider Rubidium atoms and use the Rydberg states
49p and 50s, which have a transition dipole moment of d0 = 5.9 kD. The latter is coupled to the
ground state using a laser with Rabi frequency Ωr/2π = 100 MHz and detuning ∆r/2π = 500 MHz.
For α = 0.45 (ΩMW/2π = 450 MHz) we obtain dressed ground state atoms with a dipole moment of
dg̃ = 60 D and a lifetime of τg̃ = 6.3 ms. The resonant Condon point for the atom-atom interaction
is raa

c = 1.9 µm and the melting temperature Tmelt. = 0.2 µK. The atoms are therefore in a gas phase.
We take into account decay from the Rydberg states including spontaneous emission and blackbody
radiation for T = 300 K.

For the model molecule we assume a dipole moment of dm = 2.5 D and a mass of mM = 100
amu. For a layer separation of ` = 400 nm and an initial energy of E0 = 240 µK this results in a
cooling rate of γ−1 = 3.1 ms and an atom-molecule Condon radius of ram

c = 165.4 nm. The atoms are
confined by an harmonic potential with ω⊥/2π = 30 kHz resulting in a saddle-point energy barrier of
Vsp = 31.65 µK and a critical loss radius of rcrit. = 1 µm. Atoms which get closer than this distance
are lost. The harmonic oscillator length is aho = 44 nm. We perform active laser cooling on the atoms
with a cooling rate β/2π = 50 kHz and a diffusion rate D such that the resulting Doppler temperature
is kBTD = D/2β = kB 1 µK.

4.4.2 Results

Fig. 4.4(left) shows the molecular kinetic energy averaged over 50 runs of simulations as a function
of time for the parameters discussed above. The green line is the analytic result of Eq. (4.5). The
time to cool the molecules in the simulation takes longer by a factor of ∼ 1.7 due to atom-atom
interactions and the loss of particles, which results in a time-dependent cooling rate γ. The loss of
particles is shown in Fig. 4.4(right): After the time τg̃ = 6.3 ms approximately 35 % of the atoms are
lost. Fig.4.4(middle) show the mean kinetic energy averaged over the 67 particles of the simulation
as a function of time. The red-dashed line corresponds to the Doppler temperature TD, while the
black-dashed line is the melting temperature of the atomic crystal. Since, TD > Tmelt. the atoms are
in a gas phase.

4.4.3 Atom - molecule bound states

Due to the attractive part of the inter-layer interaction of Eq. (4.14) there is the possibility that the
molecule gets trapped and forms a quasi-bound state together with the atom over both layers, illus-
trated in Fig. 4.5. The potential is given by

Vbound(ρ)/V0 ≈ 3
(
ρ

`

)2
− 1, with V0 =

dg̃dM

2πε0`
3
0

, (4.17)
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Figure 4.5. Illustration of an atom-molecule bound states

which is in lowest order quadratic with a frequency of ωbound =

√
6V0/m`2

0. The potential has a

zero-crossing at ρ0 =
√

2` and a maximum at ρmax = 2`, with V(ρmax) = 2V0/25
√

5 ≈ 0.04V0.

For the parameters discussed above we find V0 = 33.9 µK > TD, which is smaller than the final
equilibrium temperature of the molecules and ωbound = 2π × 50 kHz = 2.5 µK.
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Parallel execution of quantum gates in a long linear ion chain
via Rydberg mode shaping†
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Weibin Li1, Alexander. W. Glaetzle2, Rejish Nath2, Igor Lesanovsky1
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Kingdom

2Institute for Theoretical Physics, University of Innsbruck,
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We present a mechanism that permits the parallel execution of multiple quantum gate oper-
ations within a single long linear ion chain. Our approach is based on large coherent forces that
occur when ions are electronically excited to long-lived Rydberg states. The presence of Ryd-
berg ions drastically affects the vibrational mode structure of the ion crystal, giving rise to modes
that are spatially localized on isolated subcrystals which can be individually and independently
manipulated. We theoretically discuss this Rydberg mode shaping in an experimentally realistic
setup and illustrate its power by analyzing the fidelity of two conditional phase flip gates executed
in parallel. The ability to dynamically shape vibrational modes on the single-ion level might find
applications in quantum simulators and quantum computation architectures.

5.1 Introduction

The ability to execute multiple quantum operations in parallel is believed to be a fundamental re-
quirement for achieving large-scale quantum computation [1–3]. Among the many types of systems
being considered for the physical implementation of a quantum processor [4], trapped ions have at-
tracted much attention for the astonishingly high degree of experimental control that can be gained

†The author of the present thesis contributed to this publication through discussions on the derivation and interpretation
of the results, in particular on the microwave coupling scheme. The detailed derivations and numerical calculations have
been performed by WL and IL.
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Figure 5.1. (Color online) (a) Level structure of Ca+ and schematics of the envisioned setup.
Red and blue symbols refer to ions in Rydberg states and ions in electronically low-lying (ELL)
states, respectively. subcrystals of ion pairs are isolated within a linear crystal formed by 100
ions by the excitation of selected ions to the Rydberg nP1/2 state (here the 45th, 48th and 53rd,
56th). Using laser-induced spin-dependent forces, quantum gates can be executed on the two
subcrystals in parallel. (b) Vibrational modes of a crystal formed by 100 ions in ELL states.
Depicted is the modulus of the normal mode matrix B( j,x)

m where j (m) refers to the mode (ion)
index (see text for further detail). (c) Vibrational modes in the presence of four Rydberg ions.
The white dashed lines delimit the region corresponding to the ions that are shown in panel (a).
The Rydberg ions drastically reshape the vibrational mode structure, leading to the emergence
of modes that are localized on the two subcrystals (see inset).

over their internal and external degrees of freedom [3]. One strategy for achieving parallelism is to
build many local quantum processors. Current proposals envision setups where ions are confined in
spatially separated wells provided by arrays of microtraps [5] or by traps with segmented electric field
electrodes [6]. Few ions trapped within a given well form one of many local quantum processors that
can be operated independently and in parallel [7]. Information can be exchanged among different
local processors by rearranging the potential landscape such that previously disconnected ions have
common vibrational modes. Such rearrangement is usually achieved by switching voltages applied to
the ion trap electrodes [6]. In spite of the availability of microstructured arrays it remains a challenge
to obtain fast switching times and a high spatial resolution of the local electric fields that would grant
a manipulation of the potential landscape down to the level of a single ion.

In this work we introduce a scheme that permits the execution of multiple quantum gates in par-
allel on a long linear ion crystal. The method relies on the shaping of the vibrational crystal modes
through the laser excitation of selected ions into electronically excited Rydberg states. Strong coher-
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ent forces acting on these excited ions [8, 9] effectively break the long crystal into small subcrystals
in the sense that vibrational modes emerge which are strongly localized on only a few ions. We illus-
trate the power of this Rydberg mode shaping by thoroughly analyzing the fidelity of two two-qubit
conditional phase flip (CPF) gates that are executed in parallel on different subcrystals belonging to
the same ion chain. A feature of our scheme is that decoupling between the localized modes and the
remaining spectator modes permits us not only to achieve a high gate fidelity but also to drastically
reduce the complexity of gate optimization protocols [10–12]. In view of the intrinsic stability of
ion crystals [13], the ability to address single ions individually by lasers [14] and the long lifetime of
Rydberg states, we believe that this dynamical mode shaping is particularly useful in digital quantum
simulations [15] as these strongly benefit from the availability of robust parallelization approaches.

5.2 Setup and idea

Before providing details let us briefly outline the setup we have in mind. We consider a long linear
crystal of 100 40Ca+ ions which is realized within a quartic electric potential (see details below). This
choice is motivated by the proposal discussed in Ref. [13], which envisages the implementation of
an ion quantum processor where a long ion chain is divided into two parts: Quantum computation is
carried out in the central region where ions are nearly uniformly spaced. The remaining outer ions
are continuously Doppler cooled to prevent heating. To describe the internal structure of the ions
we consider the four states depicted in Fig. 5.1(a). The electronically low-lying (ELL) S , P, and D
states are employed in numerous ion trap experiments for the storage, manipulation, and read-out of
quantum information [3]. Furthermore, we consider the Rydberg state nPJ (with J = 1/2 and the
principal quantum number n) which is excited from the 3D3/2 state via a single photon transition [14,
16].

We envisage Rydberg excitations to be carried out in the central region of the ion chain and in
Fig. 5.1(a) we illustrate a situation where four Rydberg ions enclose two pairs of ions in ELL states.
Those ion pairs will form the subcrystals on which we are going to execute quantum gates in parallel.
The underlying physical mechanism which we aim to exploit for this purpose becomes apparent in
Figs. 5.1(b) and (c). Here we show the absolute values of the normal mode matrix of the vibrational
crystal modes which provide a measure on how much each ion contributes to a vibrational mode. In
Fig. 5.1(b), which shows the case in which all ions are in ELL states, we see that, in general, many
ions contribute to each normal mode. Compared to this, the presence of Rydberg ions leads to a
drastic change of the mode structure as can be seen in Fig. 5.1(c). The reason is rooted in the large
polarizability PnP of Rydberg states [9], which modifies the local trapping potential, leading essen-
tially to a constriction of the ion chain at positions where Rydberg ions are excited. The selective
Rydberg ion excitation thus creates localized modes, primarily occupying the two isolated subcrys-
tals composed by ions in ELL states. This Rydberg mode shaping permits the parallel execution of
quantum gates on the two subcrystals. This is similar in spirit to the idea underlying segmented ion
traps [17, 18]. The advantage of our approach is that due to the availability of single ion laser address-
ing it fundamentally permits the control of the potential landscape on the smallest achievable length
scale, namely on the level of single ions.
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5.3 Implementation

5.3.1 A long linear ion crystal

Let us now provide a more detailed discussion of the practical implementation of the above idea. To
achieve a long ion crystal we consider an ion trap formed by the time-dependent electric potential:

Φ(r, t) = Φrf(r, t) + Φst(r). (5.1)

Here

Φrf(r, t) = α cos Ωt(x2 − y2) (5.2)

is the potential of a radio-frequency (rf) field with gradient α and frequency Ω and

Φst(r) = β2
2z2 − r2

2
+ β4

[
z4 − 3z2 r2 +

3
8

r4
]
, (5.3)

with r2 = x2 + y2, is a quartic static electric potential whose parameters β j ( j = 2, 4) depend on
the specifics of the field-generating electrodes, i.e., the gradient and higher derivatives of the field.
Recently, similar potentials have been realized experimentally [17, 18]. For a sufficiently fast rf
frequency drive [19] an ion of mass M experiences the ponderomotive potential

Vp(r) = e
[

eα2

MΩ2 r2 + Φst(r)
]
. (5.4)

Within this trap an ion chain is formed along the z axis provided that α � {|β2|, β4l2s} > 0 (β2 < 0).
Here ls = [e/(8πε0|β2|)]1/3 is the typical length scale associated with Vp(r) and e and ε0 are the ele-
mentary charge and the vacuum permittivity, respectively. In addition, the tuning of the parameters
β2 and β4 permits us to achieve a long ion crystal in which the equilibrium positions of ions in ELL
states are approximately evenly spaced [13]. The equilibrium positions of the long ion crystal is de-
termined by a parameter k4 = 2β4l2s/|β2|. In the following we set k4 = 1.343 as this choice minimizes
fluctuations of the nearest-neighbor separation within the central region of the ion chain [13].

In Ref. [9] we showed that ions excited to the nP1/2-Rydberg state experience not only the pon-
deromotive potential but are also subject to an additional radial potential that is proportional to the
Rydberg polarizability Va(r) ≈ −e2α2PnPr2, where PnP ≈ −0.25 × n7 (in atomic units). There are
also small corrections to the trapping potential along the z axis but those are negligible in this linear
ion trap. The ratio of the radial trap frequencies experienced by an ion in the Rydberg/ELL state is
approximately given by

ωRyd

ωELL
=

√
1 − MΩ2PnP (5.5)

In practice, ratios on the order of 2 and larger can be achieved. In the following we show that this is
already sufficient for a Rydberg ion to effectively introduce a constriction of the linear ion chain which
strongly affects the vibrational mode structure. Note, that such state-dependent trap frequency change
has also been theoretically reported for Rydberg atoms in inhomogeneous magnetic fields [20].
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5.3.2 Collective modes and mode shaping

Let us now demonstrate the mode shaping considering the transverse phonon modes along the x
axis as an example. The treatment of the y phonons is done accordingly. The phonon Hamiltonian
is [7] Hv =

∑N
j=1 ~ω j(b

†
jb j + 1/2). Here b†j (b j) is the creation (annihilation) operator of the jth

phonon, whose frequency ω j is calculated by diagonalizing the Hessian matrix [
∑

mHmnB( j,x)
m =

(ω j/ωs)2B( j,x)
n ] with

Hmn =


[
ω(x)

m
ωs

]2
+ 1

2 − 3k4
2 z2

m −
N∑

k,m

1
|zk−zm |3 , n = m

1
|zm−zn |3 , n , m

and B( j,x)
m denoting the eigenvectors. The parameters zm are the z component of the equilibrium

position of the mth ion and ω(x)
m is the state-dependent trapping frequency of the mth ion along the

x axis; i.e., ω(x)
m = ωRyd(ωELL) if the ion is in the Rydberg (ELL) state. For convenience, we have

defined a reference frequency ωs =
√

2e|β2|/M and scaled length with ls such that the Hessian is
dimensionless.

We start with a simple situation where in our chain of 100 ions the 45th and 56th are excited
to the Rydberg state. The resulting change of the mode structure becomes directly apparent in the
modulus of B( j,x)

m which is depicted in Fig. 5.2(a). Compared to the situation without mode shaping
[Fig. 5.1(b)], the striking difference is that the 46th to 55th ions constitute a virtually isolated sub-
crystal hosting a series of spatially localized modes. The energies of these local modes are shown
in Fig. 5.2(b) where we also undertake a comparison to the mode energies obtained by consider-
ing exclusively the subcrystal, i.e., a truncated linear crystal composed of only 10 ions. Note, that
although we are considering here a case in which the subcrystal ions are symmetrically positioned
around the center of the ion crystal, our observations remain true also in asymmetric situations. To
effectively create subcrystals with localized modes we require that (ωRyd/ωs)2 � max(Hmn) (m , n)
with max(Hmn) being the maximum of the off-diagonal matrix elements of the Hessian. This con-
dition means that the energy of vibrational modes to which Rydberg ions participate significantly is
much larger than the energy of the collective modes of ions in ELL states.

5.3.3 Parallel conditional phase gates

Let us return to this initial example in which we had two subcrystals composed by the ion pairs
{46, 47} and {54, 55}. Each of the subcrystals hosts two localized vibrational modes. The eigenvector
corresponding to the localized mode with higher energy is displayed in the inset of Fig. 5.1(c). In
the following we show that with these local modes, we can execute two two-qubit gates in parallel.
Specifically, we discuss a σz-type [24] two-qubit CPF gate. Qubits are encoded in two ELL states of
an ion, denoted by | ↑〉 and | ↓〉. These can be hyperfine states as discussed in Refs. [25, 26] or states
coupled by optical quadrupole transitions as, e.g., in Ref. [27]. The CPF gate is implemented by a
laser-induced coupling [see gate lasers in Fig. 5.1(a)] between the qubit states and the vibrational
crystal modes/phonons. This results in a ”spin-dependent” force [25–27] whose action is described
by the spin-phonon Hamiltonian [11, 28]

HI =

N∑
m, j=1

~Ωm(t)σz
mη

( j)B( j,x)
m (b†je

iω jt + h.c.). (5.6)
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Figure 5.2. (Color online) (a) Modulus of the eigenvector B( j,x)
m when ions 45 and 56 are

in the Rydberg state. Localized modes reside on ions in ELL states forming the subcrystal
delimited by the two Rydberg ions. Panel (b) shows the corresponding eigenenergy of the
localized modes obtained from the full (circles) and truncated (diamonds) calculations. The
largest discrepancy between these calculations is about 0.3%. The dots show the (quasi con-
tinuous) energy spectrum of the ion chain without mode shaping. In all the calculations we
use ωELL/ωs = 150 and ωRyd/ωs = 198.5.

Here Ωm(t) is the time-dependent Rabi frequency of the gate laser that addresses the mth ion and
η( j) = kL l j is the corresponding Lamb-Dicke parameter, with kL being the modulus of the laser wave
vector and l j =

√
~/2Mω j being the oscillator length associated with the jth phonon mode. The CPF

gate is conducted by switching the gate lasers on for a given time τ during which the Rabi frequencies
Ωm(t) are varied. Using the Magnus formula [29], the evolution operator due to HI is then given by

U(τ) = exp

i ∑
m

Qm(τ)σz
m + i

∑
mn

φmn(τ)σz
mσ

z
n

 . (5.7)

The first term in the exponential characterizes the residual coupling of the mth qubit with the phonon
modes and depends on Qm(τ) =

∑
j[α

( j)
m (τ)b†j + h.c.], where α( j)

m (τ) is a parameter that characterizes
the coupling strength. The second term gives rise to a phonon-induced spin-spin coupling between
the mth and nth qubit, thereby effectuating a CPF gate. A perfect CPF gate is realized when φmn(τ) =

π/8 and α
( j)
m (τ) = 0. As shown in Refs. [10–12] this can be achieved via optimizing the time-

dependent profile of the Rabi frequencies Ωm(t). Such optimization is challenging since, in general,
many phonon modes contribute even when only a single CPF gate operation is conducted within a
long ion chain. Rydberg mode shaping has the potential to drastically reduce the complexity of such
optimization procedure as even in long crystals only few vibrational modes actually couple to the
qubit ions located on a subcrystal.

Let us now analyze the performance of two CPF gates that are executed in parallel on the two
subcrystals depicted in Fig. 5.1(a). To assess the performance of the gate operation, we use the high-
energy mode [inset of Fig. 5.1(c)] as ”quantum bus”. The gate lasers are switched on for a time
τ = 8τb, where τb = 2π/ωb is the oscillation period of the bus mode and the Rabi frequency is
assumed to follow Ωm(t) = Ω0 sin(νt) (as also discussed in Ref. [26]). We optimize the fidelity with
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respect to the parameter ν of this simple ansatz. Imposing a two-qubit phase shift φmn(τ) = π/8 fixes
the value of the amplitude Ω0 (for more detail see Ref. [28]). The qubits are prepared in a product
state,

|Ψ(0)〉 =
(|ψm1〉 ⊗ |ψn1〉

) ⊗ (|ψm2〉 ⊗ |ψn2〉
)
, (5.8)

with |ψm〉 = (| ↑m〉 + | ↓m〉)/
√

2 and {m j, n j} being indices of ions forming the jth subcrystal. Ideally,
the output state after the parallel execution of the two CPF gates is

|Ψ(τ)〉 = exp[i
π

4
(σz

m1
σz

n1
+ σz

m2
σz

n2
)]|Ψ(0)〉. (5.9)

However, due to the residual phonon-qubit coupling this state will be only reached with a certain
probability, which we characterize through the fidelity

F = 〈Ψ(τ)|Trvρ(τ)|Ψ(τ)〉 (5.10)

Here, ρ(t) = U(t)ρ(0)U†(t), with ρ(0) = ρv⊗|Ψ(0)〉〈Ψ(0)| and Trv denotes the trace over the vibrational
modes whose density matrix is ρv. For calculating the fidelity we assume the following sequence: The
ions are initially in ELL states and the phonon density matrix ρv is a thermal distribution. Rydberg
ions are subsequently excited via protocol that is highly nonadiabatic with respect to the phonons; i.e.,
the phonon density matrix is unchanged. In Appendix 5.A we provide more detail on such protocol.
The gate fidelity is then calculated via a transformation that expresses ρv in terms of the shaped
vibrational modes [9]. The exact details of the calculation are provided in Appendix 5.B.

Let us first consider a situation in which the two CPF gates start simultaneously. We find that the
highest achievable fidelity within our simple ansatz is Fmax ≈ 99.95%. As shown in Fig. 5.3(a), this
maximum occurs at ντ = 2π × K (with K an integer). At these points the bus modes almost entirely
return to their initial states [11, 30]. The fact that such a high fidelity is achievable within this simple
ansatz is a direct consequence of the fact that the Rydberg ions delimiting the subcrystal lead to a
dramatic reduction of the number of vibrational modes that couple to the qubit ions. This reduction
is clearly shown by the data presented in Fig. 5.3(a). Without this Rydberg mode shaping the highest
fidelity that we can achieve is 93%.

The power of the mode shaping becomes even more apparent when introducing a start time delay
td of the second CPF gate with respect to the first one. Fmax slightly decreases with growing td but
always remains above 98%, as shown in Fig. 5.3(b). This demonstrates that the two CPF gates can
be operated essentially independently. In the absence of mode shaping, however, Fmax quickly drops
with increasing td reaching a minimal value of ≈ 36.1%.

Finally, let us discuss additional sources that would influence the gate fidelity. First, the fidelity
will be, in principle, reduced by the radiative decay of the Rydberg state. This is mitigated by the
fact that CPF gates are inherently fast [28] and that Rydberg states are long lived. For example,
choosing the 60P1/2 state, we obtain a Rydberg lifetime ≈ 270 µs and with the trap parameters
α = 7 × 108 V/m2, Ω = 2π × 25.2 MHz, and β2 = −2.09 × 103 V/m2 we obtain a gate time
τ ≈ 3.7 µs. Taking into account the Rydberg excitation time, the gate fidelity will be modified by an
overall factor, about 0.982NRyd , with NRyd the number of Rydberg ions that are excited during the gate
operation. However, in principle, the gate operations can be accelerated by using a more sophisticated
optimization protocol [13], and furthermore, optimized gate schemes can be imagined in which the
Rydberg ions do not stay permanently excited. Second, infidelities are caused by other factors, such
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Figure 5.3. (Color online) (a) Fidelity of the two CPF gates. The solid (dotted) curve is
the result calculated using all (only the four localized) modes. The dashed curve corresponds
to the gate fidelity without mode shaping, where the bus mode is the highest energy mode
[Fig. 5.2(b)], whose average phonon number is 3.25. In the calculations, we assume that all
phonon modes when the ions are in the ELL states have the same temperature. (b) Maximal
fidelity vs. delay time. Fmax is found by maximizing the fidelity over ν within the range shown
in (a). The solid (dashed) curve stands for the calculation with (without) mode shaping.

as the anharmonicity of the ionic motion and corrections beyond the Lamb-Dicke limit. These have
been investigated in detail by Lin et al. in Ref. [13] and their contributions have been found to be
marginal.

5.4 Summary and outlook

In conclusion, we showed that the transverse vibrational modes of a linear ion chain can be shaped
by the selective excitation of Rydberg ions leading to the emergence of strongly localized modes.
This Rydberg mode shaping can potentially be applied for implementing quantum simulation and
processing schemes within a single large (possibly three-dimensional) ion crystal. One can envisage
a scheme where dedicated ions are not used as qubits but only for segmenting the crystal. When
excited they give rise to local modes that permit the parallel manipulation of sets of qubits. When
deexcited the nonlocal character of the vibrational modes is restored permitting the entanglement of
more distant qubits.

A drawback of the current scheme is that the gate execution follows the Rydberg excitation. This
means that Rydberg ions are excited throughout the entire duration of the gate sequence which con-
sequently leads to a reduced fidelity. A future goal is therefore to devise optimized control sequences
which reduce the Rydberg excitation time but at the same time make use of the existence of localized
modes. In addition, the Rydberg mode shaping is particularly applicable for parallel execution of
multiple quantum gates with the Mølmer-Sørensen scheme [30]. If, instead, the gate is based on the
Cirac-Zoller scheme [31], where phonons need to be cooled to the ground state initially, the conse-
quent gate error will be severe as phonons can be significantly excited after the Rydberg excitation
(see Appendix 5.B).
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5.A Excitation of Rydberg ions

For the practical application of the mode shaping it is crucial to excite ions to the Rydberg state with
high fidelity, which can be a challenge if the trapping potentials of ELL and Rydberg states are very
different: In general, the (reduced) density matrix of the ion to be excited is given by |3D3/2〉〈3D3/2| ⊗
ρD, where ρD is the density matrix of the external degrees of freedom. The Rydberg excitation
needs to take the ion to the state |nP1/2〉〈nP1/2| ⊗ ρP as the shaped modes are only present if the
electronic population of the ion is entirely transferred to |nP1/2〉. Note that the density matrix of
the external degrees of freedom can, in general, change during the excitation process, e.g., due to
nontrivial Franck-Condon factors which arise from the different potential shapes in low-lying and
Rydberg states [9]. There are a number of strategies to perform the transfer with high fidelity: For
example, one can cool all phonon modes to the ground state, such that the initial state ρD is precisely
known. The excitation laser pulse (frequency, strength, and duration) can then be optimized to achieve
perfect electronic state transfer. Alternatively, one can use a broad band laser excitation that does
not resolve the individual phonon modes [32] and thus performs the transfer independently of the
phonon state. Both methods, however, are rather challenging with current technology [14, 16, 19]. A
currently feasible alternative is to remove the difference in the trapping potentials during the excitation
process by altering the polarizability of Rydberg states through the application of a microwave field
(MW), which creates dressed states of tuneable polarizability. The Rydberg excitation is then no
longer different than the excitation of ELL states. After the excitation has been carried out the MW is
switched off in a way that is adiabatic on electronic timescales but can be highly non adiabatic on the
timescale of the phonon dynamics.

The scheme works as follows. Together with Rydberg laser, we apply a MW field that couples
the Rydberg |nP3/2(1/2)〉 (denoted by |P〉) with a nearby s-state |n′S 1/2(1/2)〉 (denoted by |S 〉). The
corresponding ion-field interaction is given by

V(t) = −eE0 cosω0t z − eE1 cosω1t z, (5.11)

where E0 (E1) is the laser (MW) electric field and ω0 (ω1) is the Rydberg laser (MW) frequency.
Both the Rydberg laser and the MW field are linearly polarized along the z axis. The field-free
Rydberg energies are εS and εP, respectively. To be concrete we also assume εS < εP. To proceed,
it is convenient to transform into the interaction picture. Using the unitary operator Ui = |D〉〈D| +
eiω0t|P〉〈P| + ei(ω0−ω1)t|S 〉〈S | and in rotating-wave approximation, we obtain the Hamiltonian (~ = 1)

H = ∆S |S 〉〈S | + ∆P|P〉〈P| + HL, (5.12)

HL =
ΩL

2
(|P〉〈D| + h.c) +

ΩMW

2
(|S 〉〈P| + h.c.),

where ∆S = εS − (ω0 − ω1) and ∆P = εP − ω0. ΩL = −eE0〈P|z|D〉 and ΩMW = −eE1〈S |z|P〉.
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Figure 5.4. Level scheme used in the Rydberg excitation. A strong MW field results in a
large Autler-Townes splitting [33] between the two dressed states.

We consider a strong MW field, ΩMW � Ω0, for which it is convenient to use the dressed state
in order to describe dynamics of the Rydberg states. By diagonalizing the part of Hamiltonian (5.12)
that contains the MW coupling part, the dressed states are given by
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Figure 5.5. (a) Carrier resonant transition of the |−〉 state. The black (dotted) curves are
solutions of the Hamiltonian Eq. (5.12) [Hamiltonian Eq. (5.14)]. The gray and dark-gray
curve correspond to the probability of the |P〉 and |S 〉 state. The parameters are: Ω− = 2π × 1
MHz, ΩMW = 2π × 400 MHz, ∆S = 2π × 136.074 MHz and ∆P = 2π × 293.957 MHz. These
parameters lead to a vanishing polarizability of the dressed |−〉 state. (b) Adiabatic evolution
of the population in the P and S state. The change rate is c = ΩMW/4.7.

|±〉 = N± (C±|P〉 + |S 〉) , (5.13)

where C± =
∆−±
√

Ω2
MW+∆2−

ΩMW
with ∆± = ∆P ± ∆S and N± is the normalization constant. The dressed

state energy is E± =
∆+

2 ± 1
2

√
Ω2

MW + ∆2−. With the dressed state at hand, the Hamiltonian Eq. (5.12)
becomes

H ≈ E+|+〉〈+| + E−|−〉〈−| + H′L, (5.14)

H′L = −1
2

(Ω−|−〉〈D| + h.c.) +
1
2

(Ω+|+〉〈D| + h.c.),
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with Ω± =
ΩMW

2
√

Ω2
MW+∆2−N±

ΩL. Thus, the low-lying D state is now coupled with the two dressed states.

Here the large energy splitting allows us to address the dressed states individually with the Rydberg
laser.

The polarizability of the dressed state is P± = N2±(C2±PnP + Pn′S ). As Pn′S > 0 for high-lying
Rydberg states, the polarizability of the dressed state vanishes under certain conditions. For example,
for n′ = n, P± = 0 when |C±| ≈ 0.68, which can be realized by controlling the MW frequency and/or
Rabi frequency. On the other hand, when P± = 0, the trapping potential of the Rydberg ion in the
dressed state becomes identical with that of the ions in ELL states. In this case the Franck-Condon
factors [9] become trivial and the laser excitation is not different than transitions driven among ELL
states. In Fig. 5.5(a) we demonstrate the |−〉 state excitation. After a π pulse, the ion is excited to the
|−〉 state.

Once the state |−〉 is excited, the Rydberg laser is switched off and also the MW is switched off

such that |−〉 is adiabatically transferred to the state |P〉. As an example, we show in Fig. 5.5(b) a case
in which the MW detuning is changed according to ∆S P(t) = (∆S −∆P)[1− c2t2]. The Rydberg ion is
fully populating the P state after about 13 ns.

5.B Calculation of the gate fidelity

As shown in the previous section, the Rydberg excitation can be performed on a timescale that is
highly non adiabatic with respect to the vibrational dynamics. In the extreme case the spatial wave
function of the ion does not change, i.e., is frozen, in the course of the Rydberg excitation. In this
section, we show how for this case the gate fidelity can be calculated by using a Duschinsky trans-
formation that connects the phonon modes before the Rydberg excitation (bare phonon modes) to the
shaped phonon modes.

Let us first describe the normal coordinate Qg and canonical momentum Pg of the bare mode
using the corresponding phonon creation and annihilation operators [7],

Qg = Lg(A† +A), (5.15)

Pg = Pg(A† −A), (5.16)

where A† and A are both column vectors, A† = (a†1, a
†
2, · · · , a†N)t and A = (a1, a2, · · · , aN)t, with

N the total number of ions and t to be the transpose operation. ap (a†p) is the annihilation (creation)
operator of the pth bare phonon mode. Lg and Pg are diagonal matrices, whose matrix elements are
Lg(p, p) =

√
~/2Mω̃p and Pg(p, p) = i

√
~Mω̃p/2, where ω̃p is the pth phonon frequency of the bare

mode. Similarly, we obtain the result of normal coordinate Qe and momentum Pe of the Rydberg
shaped mode

Qe = Le(B† + B), (5.17)

Pe = Pe(B† − B), (5.18)

whereB† = (b†1, b
†
2, · · · , b†N)t,B = (b1, b2, · · · , bN)t, Le(p, q) =

√
~/2Mωp, and Pe(p, q) = i

√
~Mωp/2

when p = q and zero otherwise.

We now find the Duschinsky transformation between the bare and Rydberg modes. The displace-
ment of the ions around their equilibrium positions is denoted by a column vectorX = (x1, x2 · · · , xN)t.
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Table 5.1. The 4-qubit basis

|1〉 = | ↑↑↑↑〉 |2〉 = | ↓↑↑↑〉 |3〉 = | ↑↓↑↑〉 |4〉 = | ↑↑↓↑〉
|5〉 = | ↑↑↑↓〉 |6〉 = | ↓↓↑↑〉 |7〉 = | ↓↑↓↑〉 |8〉 = | ↓↑↑↓〉
|9〉 = | ↑↓↓↑〉 |10〉 = | ↑↓↑↓〉 |11〉 = | ↑↑↓↓〉 |12〉 = | ↓↓↓↑〉
|13〉 = | ↓↓↑↓〉 |14〉 = | ↓↑↓↓〉 |15〉 = | ↑↓↓↓〉 |16〉 = | ↓↓↓↓〉

We can obtain that Qg = AX and Qe = BX, where A (B) is the eigenvector of the bare (Rydberg)
mode. Applying the Duschinsky transformation, one finds Qe = TQg with T = BA−1. Similarly, one
obtains Pe = TPg.

20 40 60 80 100p
-0.2

-0.1

0

0.1

0.2

T 5
6,
p

Figure 5.6. T matrix elements corresponding to one of the localized mode (mode index 56,
see Fig. 1c) and the bare mode. The mode vector is shown in Fig. 1b (bare mode) and the inset
of Fig. 1c (localized mode).

With Eqs. (5.15)-(5.18) and the Duschinsky transformation, we can find the transformation be-
tween the phonon operators of the Rydberg and bare mode,

B† =
1
2

[T+A† + T−A]
, (5.19)

B =
1
2

[T−A† + T−A]
, (5.20)

where T± = (L−1
e TLg ± P−1

e TPg). This relation allows us to express the gate evolution operator
Eq. (5.7) in the main text in terms of the phonon operators of the bare mode,

U(τ) = exp

−i(CgA† + C∗gA +

4∑
m,n=1

φmnσ
z
mσ

z
n)

 , (5.21)

= exp

−i
N∑

p=1

(cpa†p + c∗pap) + i
4∑

m,n=1

φmnσ
z
mσ

z
n

 ,
where Cg = Re(Ce)L−1

e TLg + iIm(Ce)P−1
e TPg and cp =

∑4
m=1 Cg(m, p). Ce is a diagonal matrix

characterizing the residual phonon-qubit coupling, whose diagonal matrix elements are Ce(p, p) =
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Index n=1 n=2 n=3 n=4
m=1 -2.8 π/8 4.5 × 10−4 3.1 × 10−4

(-2.8) (π/8) (3.0 × 10−4) (2.8 × 10−4)
m=2 π/8 -2.8 7 × 10−4 4.5 × 10−4

(π/8) (-2.8) (2.8 × 10−4) (3.0 × 10−4)
m=3 4.5 × 10−4 7 × 10−4 -2.8 π/8

(3.0 × 10−4) (3.8 × 10−4) (-2.8) (π/8)
m=4 3.1 × 10−4 4.5 × 10−4 π/8 -2.8

(2.8 × 10−4) (3.0 × 10−4) (π/8) (-2.8)

Table 5.2. The spin-spin phase φmn. Data in the parentheses corresponds to the φmn

without mode shaping.∑4
m=1 α

(p)
m σz

m with α
(p)
m (τ) =

∫ τ

0 Ωm(t)B(p)
m η(p)eiωptdt, where B(p)

m is the pth mode vector of the mth
ion and η(p) = kL lp is the corresponding Lamb-Dicke parameter. Here Ωm(t) = Ω0 sin(νt) is the
time-dependent Rabi frequency of the gate laser that addresses the mth ion. The spin-spin phase
is φmn(τ) =

∫ τ

0 dt′
∫ t′

0 dt
∑

p Ωm(t′)Ωn(t)B(p)
m B(p)

n η(p)η(p) sin[ωp(t′ − t)]. For convenience, we have
denoted the index of the qubit ions (the 46th, 47th, 54th, and 55th ion in the 100-ion chain) with
m (n) = 1, 2, 3, 4.

Equation (5.21) permits us to calculate the gate fidelity conveniently as the bare phonon modes are
initially in a thermal state ρv. The qubits are in a product state |Ψ(0)〉 =

(|ψm1〉 ⊗ |ψn1〉
)⊗(|ψm2〉 ⊗ |ψn2〉

)
with |ψm〉 = (| ↑m〉 + | ↓m〉)/

√
2 and {m j, n j} being indices of ions forming the jth subcrystal. Ideally,

the output state after a gate time τ is |Ψ(τ)〉 = exp[iπ/4(σz
m1
σz

n1
+σz

m2
σz

n2
)]|Ψ(0)〉. The actual gate per-

formance is characterized by the gate fidelity F = 〈Ψ(τ)|Trvρ(τ)|Ψ(τ)〉 = 1/256
∑16

j,k=1〈 j|ρ(τ)|k〉. Here

| j〉 ( j = 1, · · · , 16) is the four-qubit basis (a full list of | j〉 is given in Table 5.1), with σ(z)
m | j〉 = σ

j
m| j〉

and ρ(t) = U(t)ρ(0)U†(t) with ρ(0) = ρv ⊗ |Ψ(0)〉〈Ψ(0)|. Trv denotes the trace over the vibrational
modes. After some math, the gate fidelity is found explicitly as

F =
1

256

16∑
j,k=1

ϕ jk × exp

1
2

N∑
p=1

(
c j

pck∗
p − c j∗

p ck
p − |c j

p − ck
p|2 coth

γp

2

) , (5.22)

where cp| j〉 = c j
p| j〉 and γp = ~ωp/kBT is the temperature factor (kB the Boltzman constant, T phonon

temperature) and

ϕ jk = exp
[ iπ

4
(σk

m1
σk

n1
− σ j

m1σ
j
n1 + σk

m2
σk

n2
− σ j

m2σ
j
n2)

+ i
4∑

m,n=1

(φmnσ
j
mσ

j
n − φ∗mnσ

k
mσ

k
n)

 , (5.23)

The gate error here is mainly caused by the spin-phonon coupling, i.e., the c j
p term in Eq. (5.22).

We illustrate this with an example when ντ/2π = 1 [see Fig. 3(a)]. We assume that initially all the
bare modes share a same temperature T , in which the average phonon number of the highest energy
mode is 3.25. The temperature factor is roughly γp ∼ 0.2. The gate fidelity is calculated under two
different situations, i.e., without and with Rydberg mode shaping. When the gate is performed with
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the bare mode, we find that 0 < |c j
p| < 3.9 × 10−2. Note that the total number of coefficients c j

p is
16× 100 and that it is therefore impractical to list all of them here. While applying the mode shaping,
0 < |c j

p| < 2.2 × 10−3. Therefore, the maximal |c j
p| in the presence of the mode shaping is one order

of magnitude smaller than that of the bare mode case. In both cases, |ϕ jk| ≈ 1 (the numerical value of
the spin-spin phase φmn is given in Table 5.B), which results from the optimization of the laser Rabi
frequency Ω0 [13]. With these data we find the gate fidelity F = 0.85 (in case of the bare mode) and
F = 0.9995 (in case of the mode shaping), respectively.
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Quantum spin ice represents a paradigmatic example on how the physics of frustrated mag-
nets is related to gauge theories. In the present work we address the problem of approximately
realizing quantum spin ice in two dimensions with cold atoms in optical lattices. The relevant
interactions are obtained by weakly admixing van der Waals interactions between laser admixed
Rydberg states to the atomic ground state atoms, exploiting the strong angular dependence of
interactions between Rydberg p-states together with the possibility of designing step-like poten-
tials. This allows us to implement Abelian gauge theories in a series of geometries, which could
be demonstrated within state of the art atomic Rydberg experiments. We numerically analyze
the family of resulting microscopic Hamiltonians and find that they exhibit both classical and
quantum order by disorder, the latter yielding a quantum plaquette valence bond solid. We also
present strategies to implement Abelian gauge theories using both s- and p-Rydberg states in
exotic geometries, e.g. on a 4-8 lattice.

6.1 Introduction

The ice model has been fundamental in furthering our understanding of collective phenomena in con-
densed matter and statistical physics: in 1935 Pauling provided an explanation of the ‘zero-point

†The author of the present thesis was strongly involved in doing the calculation presented in this work and in writing the
manuscript. In particular, he preformed the atomic physics calculation deriving the van der Waals interactions. The detailed
numerical simulation of the many-body dynamics have been performed by IR and RM.

http://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.041037
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(a) (b)

(i) (ii)

(iii)

(c)

Figure 6.1. (a) In spin ice materials the magnetic moments (yellow arrows) of rare-earth
ions are located on the corners of a pyrochlore lattice, which is a network of corner-sharing
tetrahedra. They behave as almost perfect Ising spins and point along the line from the corner
to the centre of the tetrahedron, either inward or outward. Due to the different Ising-axes of
the spins this results in an effectively antiferromagnetic interaction which is frustrated. (b)
Projecting the 3D pyrochlore lattice onto a 2D square lattice yields a checkerboard lattice
where tetrahedrons are mapped onto crossed-plaquettes (light-blue). Interactions between
two spins located on � or � lattice sites have to be (i) step-like as a function of the distance,
(ii) anisotropic and (iii) require a bipartite labelling of the lattice sites. (c) Degenerate ground
state configurations of spins on a crossed-plaquette. They obey the ice-rules, which enforce
two spins pointing inward and two spins pointing outward at each vertex.

entropy’ of water ice [1] as measured by Giauque and Stout [2], while Lieb demonstrated with his
exact solution of the ice model in two dimension [3] that there exist phase transitions with critical ex-
ponents different from those of Onsager’s solution of the Ising model. The experimental discovery [4]
of a classical spin version of the ice model [5] has in turn generated much interest in the magnetism
community [6–9].

More recently, quantum ice models [10–14] have attracted a great deal of attention in the context
of phases exhibiting exotic types of orders, such as resonating valence bond liquids [15, 16] or quan-
tum Coulomb phases [12, 17–19]. They form part of a broader family of models, which also includes
quantum dimer models or other quantum vertex models [20], in which locally a hard constraint is
imposed, such as the ice rules defined below. Such a constraint can then endow the configuration
space with additional structure – most prominently, an emergent gauge field which can be the basis
of the appropriate effective description at low energies [20–22]. This is an important phenomenon as
it is perhaps the simplest way of obtaining gauge fields as effective degrees of freedom in condensed
matter physics. More broadly, this is part of a long-running search for magnetic materials hosting
quantum spin liquids [7].

In the present work we address the problem of physically realizing models of quantum spin ice and
quantum dimer models in two spatial dimensions with ultracold atoms in optical lattices. Our proposal
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builds on the recent experimental advances, and opportunities in engineering many-body interactions
with laser excited Rydberg states [23–37]. In particular, this will allow us to develop a Rydberg
toolbox for the complex interactions required in 2D quantum ice models [8]. Our investigation also
fits into the broader quest for the realization of synthetic gauge fields with cold atoms. While much
effort is being devoted to the generation of static gauge fields [38], e.g. on optical flux lattices, here
we follow the strategy of generating a dynamical gauge field [12, 17–19, 21, 22, 39–42] emerging
upon imposition of the ice rule.

While in condensed matter systems the interactions underlying ice and spin ice arise naturally in
a 3D context [see Fig. 6.1(a)], the 2D quantum ice on a square lattice requires a certain degree of fine
tuning of the relevant interactions [see Fig. 6.1(b)]. In 3D spin ice materials, for example, the ions
of magnetic rare-earth atoms reside on a pyrochlore lattice, representing a network of corner-sharing
tetrahedra. Magnetic interactions in combination with crystal fields give rise to a low energy manifold
of states on each tetrahedron consisting of six configurations, in which two spins point inward and
two spins point outward [compare Fig. 6.1(c)]. In a similar way, in water ice each O2− atom in
a tetrahedrally coordinated framework has two protons attached to it, giving rise to a manifold of
energetically degenerate configurations. 2D models of ice and spin ice can be understood as projection
of the pyrochlore on a square lattice (see Fig. 6.1), where again the low energy configurations of spins
residing on the links obey the “ice rule” two-in and two-out at each vertex. While these 2D ice models
play a fundamental role in our theoretical understanding of frustrated materials, a physical realization
requires a precise adjustment of the underlying interactions – different local configurations which
are symmetry distinct need to be at least approximately degenerate; the required fine-tuning however
needs to be delicately directionally dependent, as in the pure ice model, the ratio of some interactions
between different pairs of equidistant spins vanishes, see Fig. 6.1(b). Things are not all hopeless,
however, as there exist a number of settings in which partial progress has been made to realizing
such models. In two dimensions, artificial structures using nanomagnetic [43] or colloidal arrays [44]
have been proposed, including strategies for tuning the interactions appropriately [45]. The present
proposal with Rydberg atoms is unique, however, as it combines both the possibilities of engineering
the complex interactions using Rydberg interactions with the accessibility of the quantum regime in
cold atom experiments.

Alkali atoms prepared in their electronic ground state can be excited by laser light to Rydberg
states, i.e. states of high principal quantum number n [46–49]. These Rydberg atoms interact strongly
via the van der Waals interaction exhibiting the remarkable scaling VVdW ∼ n11, and which exceed
typical ground state interactions of cold atoms by several orders of magnitude. In an atomic ensemble
the large level shifts associated with these interactions implies that only a single atom can be excited
to the Rydberg state, while multiple excitations are suppressed within a blockade radius determined
by the van der Waals interactions and laser parameters [50, 51]. This blockade mechanism results
in novel collective and strongly correlated many-particle phenomena such as the formation of super-
atoms, and Rydberg quantum crystals [46–49]. In present experiments the emphasis is on isotropic
van der Waals interactions [23–36], which, for example, can be obtained by exciting Rydberg s-
states using a two-photon excitation scheme. In contrast, we will be interested below in excitations
of Rydberg p-states, where the van der Waals interactions can be highly anisotropic,as discussed in
Ref. [52–55]. Below we will discuss in detail the controllability of the shape and range of these
anisotropic interactions via atomic and laser parameters for the case of Rb atoms. In the present con-
text this will provide us with the tools to engineer the required complex interaction patterns for 2D
quantum spin ice and dimer models. The setup we will discuss will consist of cold atoms in optical
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lattices, where the strong Rydberg interactions are weakly admixed to the atomic ground states [56–
60], thus effectively dressing ground state atoms to obtain the complex interactions in atomic Hubbard
models required for the realization of 2D quantum spin ice and dimer models.

We then proceed to numerically analyze the family of Hamiltonian realizable with this toolbox.
We verify that it contains two phases exhibiting distinct types of order by disorder [61, 62]. Most
remarkably, quantum order by disorder – due to the presence of quantum dynamics in the ice model
– realizes the plaquette valence bond solid as an unusual non-Néel phase of a frustrated magnet. This
terminates when classical degeneracy lifting takes over.

The latter phase is conventional in that it is diagnosed by a conventional spin order parameter,
which would manifest itself in a Bragg peak in the structure factor. By contrast, the valence bond
solid would be diagnosed by higher order ‘string’ correlators, and is thus fundamentally different
from some other instances of quantum order by disorder, where finally the mechanism, but not quite
so much the order parameter, is exotic [62, 63]. Notably, precisely such order parameters have become
accessible to experimental measurements recently [64], so that our proposal not only covers the setting
for realizing quantum order by disorder, but also the means for detecting it.

In addition, at finite temperature, we find that the classically ordered state, even in the absence
of quantum dynamics, melts into a classical version of a Coulomb phase, namely a Coulomb gas
in which thermally activated plaquettes violating the ice rule play the role of positive and negative
charges. As these interact via an entropic two-dimensional (logarithmic) Coulomb law, this phase is
only marginally confined [65, 66].

While throughout the paper we will be mostly interested in quantum ice models, which require the
development of advanced interaction-pattern design, we will also discuss a second strategy to imple-
ment constrained dynamics, and in particular quantum dimer models, with Rydberg atoms. It relies
on combining simple interaction patterns, such as the ones generated by s-states, with complex lattice
structures, which can be realized either via proper laser combination or by the recently developed
optical lattice design with digital micromirror devices [67]. These models extend the class of dynam-
ical gauge fields in AMO systems to non hyper-cubic geometries. Overall, the ability to synthetically
design Abelian dynamical gauge fields with discrete variables also establishes interesting connections
with high energy physics, where these theories are usually refereed as quantum link models [68, 69].
Within this context, the key developments in engineering pure gauge theories can be combined with
other schemes, where dynamical matter is included, which have already been proposed in the context
of cold atom gases [69].

The paper is structured as follows. In Sec. 6.2, we briefly provide the background on quantum ice
models needed for digesting the remainder of the material. Sec. 6.3 outlines the implementation of a
family of model Hamiltonians approximating the quantum ice model using atoms in optical lattices
weakly admixed with a Rydberg p-state. Our model Hamiltonians are then analyzed for their phase
diagram in Sec. 6.4. Sec. 6.5 presents strategies to implement simpler Abelian gauge theories using
both s- and p-Rydberg states in exotic geometries, e.g. a 4-8 lattice. The paper closes with a summary
and outlook in Sec. 6.6.
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6.2 The quantum ice model

This section provides a brief overview over the statistical mechanics of the ice model, the emergence
of a gauge field, and the challenges in realizing such a model experimentally.

6.2.1 The configuration space: ice rules and emergent gauge fields

The ice model on the square lattice, also known the six-vertex model or simply square ice [3], has
Ising degrees of freedom residing on the links of a square lattice. They can either be thought of as
‘fluxes’,

{
Ŝ z

i

}
, pointing in either of the directions along the bond i, see layer (i) of Fig. 6.2(a); or

equivalently can be mapped onto spins
{
S z

i

}
which point up or down depending on the direction of the

flux [see layer (ii) of Fig. 6.2(a)].

Only configurations satisfying the ice rule are permitted, which stipulate that the spins on each
vertex add up to zero – there are

(
4
2

)
= 6 ways of arranging this, see panel (i) of Fig. 6.2(b). The

number of configurations satisfying the ice rule grows exponentially with the size of the system – for
a lattice of N spins, there are (4/3)

3N
4 ice states [3].

The origin of the emergent gauge field is transparent in flux language, where it implies that the
lattice divergence of the flux field vanishes: defining the x(y) component of a two-dimensional vector
flux b to be the flux along the corresponding links emanating from a vertex in the positive x(y)
direction, one has

∇ · b = 0⇒ b = ∇ × a. (6.1)

Note that a gauge field a has appeared naturally as a consequence of enforcing the ice rule, just
as it does in magnetostatics, where Maxwell’s law for the magnetic field ∇ · B = 0 leads to the
introduction of the familiar vector potential A.

In the present example in two dimensions, where the flux is a two component vector b, and the
scalar constraint ∇ ·b = 0 fixes one degree of freedom, a only has one physical degree of freedom left
– it can be thought of as a scalar, usually referred to as a height: a = hz ‘in the z-direction’ [65, 66].
Defects in this height field – forbidden in the six vertex model but allowed when violating the ice rule
comes only with a finite energy penalty – are then known as charges or monopoles, which carry a
gauge charge with respect to the emergent gauge field.

Having enforced the ice rule, the natural degree of freedom is thence an emergent gauge field
a – it is in this way that gauge fields quite generically emerge in condensed matter physics, with a
constraint arising either from the need to satisfy a dominant term in the Hamiltonian, or a microscopic
relation on the local Hilbert space [20].

6.2.2 Realization, and fine-tuning in d = 2

The ice rule on a given vertex involves four spins, but it can be enforced via a pairwise interaction: if
all four spins on a vertex interact antiferromagnetically and equally – described by the Hamiltonian

Hice = V
∑
i, j∈+

S z
i S

z
j, (6.2)
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(i)

(ii)

(iii)

(a)

(i)

(ii)

(b)

Figure 6.2. (a) The spins of the 2D ice model on a checkerboard lattice can be inter-
preted as (i) “fluxes”, {Ŝ z

i }, pointing either inward or outward of a specific crossed plaquette.
This requires a bipartite labeling of the plaquettes (light blue and light magenta plaquettes)
since an outward pointing flux vector corresponds to an inward pointing flux vector for the
neighboring plaquette. (ii) They can be interpreted as spins, {S z

i } aligned perpendicular to the
plane, pointing either up (red arrows) or down (black arrows). In the right inset we identify a
spin pointing up, S z

i = + 1
2 , with a flux vector pointing from the magenta to the blue plaquette,

Ŝ z
i = + 1

2 and vice versa. (iii) Spins, {S z
i }, can be mapped onto hard-core bosons, ni ∈ {0, 1}.

Here, e.g. a particle (red circle), ni = 1, corresponds to a spin pointing upward, S z
i = + 1

2 ,
while an empty lattice site (white circle), ni = 0, corresponds to a spin pointing downward,
S z

i = − 1
2 . (b) The six ice-rule states correspond to vertex configurations with two hard-core

bosons and two empty lattice sites.

where + denotes a crossed plaquette in 2D or a tetrahedron in 3D – the resulting ground states are
those which obey the ice rules, see panel (i) of Fig. 6.2(b). In three dimensions, equality of the pair-
wise interactions can be symmetry-generated – by placing the spins on the corners of a tetrahedron,
any antiferromagnetic interaction depending only on the distance between the spins will yield the ice
rule. By contrast, in two dimensions, a tetrahedron becomes a square with interactions also across the
diagonal (Fig. 6.1), which are no longer symmetry equivalent to those along the edges [70].

In particular, interactions, Vi j(r), between two spins i and j located on the bonds of a checkerboard
lattice separated by a distance r, have to fulfill three demanding properties [see Fig. 6.1(b)] in order
to map onto the Spin ice Hamiltonian of Eq. (6.2)

1. Anisotropy: Interactions have to be strongly anisotropic. This is illustrated in panel (ii) of
Fig. 6.1(b). Particles which belong to the same vertex interact strongly (red arrow), while
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particles which do not belong to the same vertex do not interact (gray arrow). Thus, for �
particles in panel (ii) one needs an interaction which satisfied V��(ϑ = 0) = 0 (gray arrow) and
V��(ϑ = π/2) = Ṽ0 (red arrow), where the angle ϑ is defined in the inset.

2. Step-like potentials: All four particles which belong to the same vertex (enclosed by light
blue squares) interact with the same strength Ṽ0, independent of their distance, either a or a

√
2,

where a is the lattice spacing. Obviously, an interaction of the form 1/|r|α would not suffice.
It is therefore necessary to have step-like potentials which fulfill Vi j(|r| < rc) = Ṽ0 , 0 and
Vi j(|r| > rc) = 0 for

√
2a < rc < 2a.

3. Bipartite-lattice structure: Furthermore, panel (iii) of Fig. 6.1(b), shows that the desired
interaction properties cannot be satisfied by a homogeneous interaction pattern, but require a
bipartite structure [squares and circles in Fig. 6.1(b)] where the angular dependence on the
interaction depends on the lattice bipartition. For example, in the last paragraph we enforced
that V��(ϑ = 0) = 0 [see panel (ii)] but the opposite is true for � particles, see panel (iii). Here,
V��(ϑ = π/2) = 0 but V��(ϑ = 0) = Ṽ0. On top of that, mixed interactions between � and �
particles on the 45 degree lines should obey V��(ϑ = ±π/4) = Ṽ0 in order to ensure that all six
possible interactions at a specific vertex are the same, see panel (i).

It is these three countervailing requirements that we manage to satisfy approximately by using
Rydberg dressed atoms to engineer an appropriate quantum Hamiltonian (Sec. 6.3).

6.2.3 Adding quantum dynamics, and quantum order by disorder

While the properties of the two-dimensional ice model were broadly understood a long time ago, the
question what a quantum version of it would look like was not posed until much later [10]. Unlike
in, say, a transverse field Ising model, where the simplest quantum dynamics consists of reversing a
single spin, the ice model does not permit such single-site configuration changes, as these would lead
to a violation of the ice rule.

The smallest cluster which may flip consists of a closed flux loop around an empty square pla-
quette, denoted by 2 (see Fig. 6.3),

H2 = −t
∑
j
i 2

k
l

(
S +

i S −j S +
k S −l + h.c.

)
(6.3)

and this will be the second ingredient that our work will implement (Sec. 6.3). What this amounts to
in the language of gauge theory is the addition of a field conjugate to the height/gauge field a = hz
– or in more familiar parlance of electromagnetism, the appearance of an (emergent) magnetic field
alongside an (emergent) electric one [22].

In two dimensions, adapting a celebrated result by Polyakov (which does not apply straightfor-
wardly as it is based on Lorentz invariance which does not hold a priori for our emergent field), it is
known that the (emergent) electromagnetism is confining. As a consequence, the emergent excitations
cannot spread freely over the system, being bounded by an effective string tension due to the gauge
fields. Concretely, one finds a phenomenon known as order by disorder [62]. The quantum dynamics
mixes the degenerate ice states into a superposition to form the quantum ground state. Even though
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| | |~ + = | |+

(a) (c)

(b)

Figure 6.3. (a) Cartoon state of a plaquette RVB solid. An alternating pattern of plaquettes
(shaded red circles) are resonating, i.e., they are in an eigenstate |�〉 [see panel (b)] of the
plaquette Hamiltonian of Eq. (6.3), H2|�〉 = −t|�〉. The GS in the thermodynamic limit is
two-fold degenerate, reflecting the different coverings of the square lattice with alternating
plaquettes. (c) cartoon of one of the degenerate ground states with (−π/2, π/2) order. Along
the bottom-left / top-right diagonal, there is antiferromagnetic order. Along the other, the order
has a double period, ↑↑↓↓.

the quantum dynamics induces fluctuations (‘disorder’), the resulting ground state exhibits long-range
order. This order takes the form known as a plaquette valence bond solid (Fig. 6.3) [71], which breaks
translational symmetry. Such valence bond solids occur frequently in the theory of quantum magnets,
but they are not commonly realized in experiment.

In Sec. 6.4, we show that the model Hamiltonian we provide a recipe for does exhibit this kind of
order-by-disorder plaquette phase, and we discuss how to detect this kind of exotic order. In addition,
we find that for weak quantum dynamics, a different, classical type of symmetry-breaking occurs
(see in Fig. 6.3(c)). This happens because different ice states are only approximately degenerate for
our engineered Hamiltonian, and the residual energy differences are sufficient to select a particular
ordered configuration.

6.2.4 Relation between quantum ice, Bose-Hubbard models and dimer models

As a starting point for our implementation, we will consider a hard-core extended Bose-Hubbard
Hamiltonian on a 2D checkerboard lattice:

H = −Jh

∑
〈i, j〉

(
b†i b j + h.c.

)
+

∑
i, j

Ṽi jnin j. (6.4)

Here, b†i (bi) is an operator that creates (annihilates) a hard-core boson on site i which obey an on-
site contained b2

i = b†2i = 0. The rate Jh is the nearest neighbor (NN) hopping amplitude and V
describes a repulsion between all atoms sitting close to the same vertex. The operator ni = b†i bi
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counts the number of bosons at site i and can be either zero or one, ni ∈ {0, 1}. The summation runs
over nearest neighbors only. The hard-core boson model can be mapped to a spin-1/2 model using
the transformation [72] b†i → S +

i , bi → S −i , ni → S z
i + 1/2, Jh → J⊥ and Vi j → Ji j, which yields

H = −J⊥
∑
〈i j〉

(
S +

i S −j + h.c.
)

+
∑
〈i j〉

Ji j

(
S z

i +
1
2

) (
S z

j +
1
2

)
. (6.5)

Expanding the last term gives the two-body interaction proportional to Ji jS z
i S

z
j and an additional

magnetic field term proportional to Ji jS z
i which is constant after fixing an initial number of particles.

This will fix the gauge sector in the gauge theory description [20].

In order to implement the constrained model of Eq. (6.2) we demand (i) anisotropic and (ii) step-
like interactions between (iii) two species of particles, as discussed in Sec 6.2.2, that is Ṽi j has to
fulfill ∑

i j

Ṽi jnin j = Ṽ0

∑
+

∑
i, j∈+

nin j, (6.6)

with Ṽ0 a constant interaction between all particles belonging to the same vertex denoted by +. Under
this assumptions, in the limit Ṽ0 � Jh the Bose-Hubbard Hamiltonian of Eq. (6.4) maps onto the
spin ice Hamiltonian of Eq. (6.2). The specific form of Vi j ensures that all six interactions between
particles which belong to the same vertex are equal and interactions between particles which do not
belong to the same vertex vanish. In the case of total half-filling of the initial bosons, N = L/2, one
has

∑
i S z

i = 0: this fixes the effective dynamics on the aforementioned ice manifold of interest. In the
case different initial fillings are considered, one has access to different quantum dynamics: a notable
case is the N = L/4 case, which defines a constrained dynamics on a manifold where a single boson
sits close to each vertex [10]. The effective description is then the same of hard-code quantum dimer
models on a square lattice.

6.3 Quantum ice with Rydberg-dressed atoms: exploiting p-states

We now turn to the realization of the extended 2D Bose Hubbard Hamiltonian of Eq. (6.4) with
cold atoms in optical lattices. The key challenge is the implementation of the interactions Ṽi j with
constraints represented in Eq. (6.6). We will show below that this can be achieved via the very
anisotropic Rydberg interactions involving laser excited p-states of Rubidium atoms.

6.3.1 Single-particle Hamiltonian on a bi-partite lattice

In our setup we consider Rubidium 87Rb atoms prepared in an internal ground state, which we choose
as |g〉 ≡ |F = 2, mF = 2〉. The atoms are trapped in a 2D square optical lattice in the xz-plane created
by two pairs of counter propagating laser beams of wavelength λ and wave vector k = 2π/λ, and
strongly confined in the y-direction by an additional laser. (We note that these external coordinates
should not be confused with the internal spin coordinates, e.g. in Eq. (6.2) and Fig. 6.2). By tilting
the laser beams by an angle α we can adjust the lattice spacing in the xz-plane to any value a =

λ/[2 sin(α/2)] ≥ λ/2 [73] (see below). Quantum tunneling allows the atoms to hop between different
lattice sites, thus realizing the kinetic energy term with hopping amplitude Jh of the single band
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(ii)(i)

Figure 6.4. We consider 87Rb atoms loaded in a square optical lattice with lattice spacing
a and lattice sites labeled alternating as � and �. Additional AC Stark lasers (magenta and
light blue arrows) with wave vectors k1 = ±2π/λAC ẑ and k2 = ±2π/λAC x̂, respectively, form
two pairs of standing waves each with periodicity b = λAC/2, which are rotated by 45 degrees
with respect to the initial lattice. In order to create local quantization axes along ẑ or x̂ for
� or � lattice sites, respectively, we require that that atoms located a � lattice site only feel
the intensity maxima of the light blue laser with k1 ∼ z, while � lattice site only feel the
intensity maxima of the magenta laser with k2 ∼ x̂. This can be achieved by adjusting the
initial trapping lattice by tilting the corresponding trapping lasers with an angle α such that
a = λ/[2 sin(α/2)] ≥ λ/2 [73] in order to fulfill b =

√
2a. The two AC Stark lasers have a

polarization σ+ and resonantly couple the n2P3/2 manifold to a lower lying n′D3/2 manifold
thereby inducing an AC Stark shift on each Zeeman m-level in the n2P3/2 manifold except
for the maximum stretched |n2P3/2, 3/2〉z,x states. This locally isolates the |n2P3/2, 3/2〉z and
|n2P3/2, 3/2〉x state at lattice sites � and �, respectively, in energy by at least EAC (see left and
right panels). A global Rydberg laser (dark blue arrow) with detuning ∆r � EAC propagating
along the y-direction then selectively admixes the states |n2P3/2, 3/2〉z and |n2P3/2, 3/2〉x at
lattice sites � and �, respectively, to the ground state |g〉.

Hubbard model (6.4). Furthermore, we work in the hardcore boson limit, i.e. U � Jh, in which
multiple occupancy in a single site is energetically prohibited.

As already discussed in the context of Fig. 6.1(b) we want to distinguish between � and � sites
in the 2D lattice. This bipartite labelling of the optical lattice is essential for realizing the complex
interaction pattern Ṽ��, Ṽ�� and Ṽ�� discussed in Sec. 6.2.2, which underlies the second term of the
extended Bose Hubbard Hamiltonian (6.4). In our scheme, we assume that atoms on lattice sites � are
excited by laser light to the Rydberg 2P3/2-state |r�〉 = |n2P3/2,m = 3/2〉z, whereas atoms at sites �
are excited to |r�〉 = |n2P3/2,m = 3/2〉x. Here the subscripts x and z indicate the different local quan-
tization axes for the � and � sites. Note that the Rydberg states of interest are the stretched states
of the fine structure manifold, i.e. states with maximum m = 3/2 value for the given angular mo-
mentum j = 3/2. We will show in the next section that the van der Waals interactions between these
polarized Rydberg p-states realize naturally the complex interaction pattern required by Eq. (6.6) for
quantum spin ice. By weakly admixing these Rydberg states to the atomic ground state with a laser
[see Sec. 6.3.3], the ground state atoms will inherit these interaction patterns, thus realizing the inter-
action term in the extended Bose Hubbard Model of Eq. (6.4), including the constraints enforced by
the interactions satisfying Eq. (6.6).

It is essential in our scheme that we energetically isolate the stretched states |n2P3/2,m = 3/2〉x,z
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Figure 6.5. (a) Angular part, A(n)
m1,m2 (ϑ), of the van der Waals interaction, V (n)

m1,m2 (r, ϑ) =

〈m1,m2|V̂vdW|m1,m2〉 = (n − δn` j)11A(n)
m1,m2 (ϑ)/r6, between a pair of 87Rb atoms in the

|3/2, 3/2〉z ≡ |n2P3/2, 3/2〉z ⊗ |n2P3/2, 3/2〉z state (solid lines) and in the |1/2, 1/2〉z ≡
|n2P3/2, 1/2〉z ⊗ |n2P3/2, 1/2〉z state (dashed lines). We plot the angular part of the rescaled
interaction energy, A(n)

m1,m2 as a function of the angle ϑ for various values of the principal quan-
tum number n in atomic units. Here, A(n)

3/2,3/2 (solid lines) corresponds to the angular part of
the interaction, V��, between two atoms excited to the |r�〉 Rydberg state and shows a char-
acteristic ∼ sin4 ϑ shape due to the dominant S 1/2-channel. Residual interactions at ϑ = 0
are very small and arise from channels coupling to virtual D-states. (see Tab. 6.1). (b) The
angular characteristic of the interaction between two atoms both in the “stretched” Rydberg
state, |r�〉 = |n2P3/2, 3/2〉z = |np, 1〉z| 12 1

2 〉z, can be qualitatively understood from its angular
part |np, 1〉z and the dominating S -channel: atom A prepared in a |np, 1〉z state can make a vir-
tual transition to a lower-lying |ns, 0〉z state (red arrow in the lower left panel) while emitting
a photon. If this photon propagates along the z-direction it has polarization σ+ and cannot be
absorbed by atom B. Therefore, atom A and atom B will not interact, i.e. V��(ϑ = 0) = 0. If
this photon propagates alone the x-direction it is linear polarized with a polarization vector
along the y-direction. In the frame of atom C this photon will drive bothσ+- andσ−-transitions
and thus can be absorbed. Hence, atom A can interact with atom C, i.e. V��(ϑ = π/2) , 0.

from the other m-states in the given fine structure manifold. This is necessary to protect these states
from mixing with other Zeeman m-levels. Such unwanted couplings can be induced by van der Waals
interactions (see Sec. 6.3.2 below), or via the light polarization of the Rydberg laser. This energetic
protection requires an (effective) local magnetic field, which for the � and � sites points in the x
and z-direction, respectively. Strong local fields with spatial resolution on the scale given by the lat-
tice spacing can be obtained via AC Stark shifts, combining the m-dependence of atomic AC tensor
polarizabilities with spatially varying polarization gradients. Fig. 6.4 outlines a scheme, where we su-
perimpose two pairs of counter propagating laser beams of wavelength λAC (light blue and magenta
arrows). They create a standing wave pattern (light blue and magenta gradients), such that � lattice
sites only see the intensity maxima of the standing wave propagating along the z-direction (light blue
laser), while � lattice sites see the intensity maxima of the standing wave propagating along the x-
direction (magenta laser).

The AC Stark lasers have polarization σ+ and resonantly couple the nP3/2 manifold to a lower ly-
ing n′D3/2 manifold (see magenta and blue arrows in the left and right panels of Fig. 6.4, respectively).
This induces an AC-Stark shift on each Zeeman m-level in the n2P3/2 manifold. The Rabi frequency

is proportional to ΩAC ∼
√

(m − 3
2 )(m + 5

2 )〈nP3/2||r||n′D3/2〉E with E the electric field strength of the
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AC Stark lasers. In this configuration the stretched states |n2P3/2,m = 3/2〉z,x of interest are not af-
fected by the AC Stark lasers. The minimum shift (as a function of m , 3/2) is denoted EAC, which
has to obey EAC � Voff and EAC � ∆r in order to suppress mixing between different m-states due
to van der Waals interactions and the excitation laser. Here, Voff is the largest off-diagonal van der
Waals matrix element in the n2P3/2 manifold (see App. 6.C).

The AC Stark lasers will create an additional trapping potential, VAC(ri)|g〉〈g|i, for ground state
atoms with minima not commensurate with the initial trapping lattice. In order to not distort the
desired lattice structure this additional potential must not be larger than the initial lattice potential,
see App. 6.A.

It is then possible to dress the ground state atoms with either the |r�〉 = |n2P3/2,m = 3/2〉z or
the |r�〉 = |n2P3/2,m = 3/2〉x Rydberg state by a single, global laser with Rabi frequency Ωr and
detuning ∆r propagating in the direction perpendicular to the plane, i.e. kr ∼ y (dark blue arrow
in Fig. 6.4). In the local x- and z-basis this laser will couple to all four |m〉z,x levels with different
weights (see App. 6.B). Since the states |m , 3/2〉z,x are energetically separated by at least EAC from
the |m = 3/2〉 state a laser with detuning ∆r � EAC and wave vector k ∼ y will selectively admix the
states |3/2〉z and |3/2〉x at lattice sites � and �, respectively, to the ground state |g〉 with an effective
Rabi frequency Ω′r = Ωr/(2

√
2). The single particle Hamiltonian describing the laser dressing in a

frame rotating with the laser frequency for an atom i then becomes

Hi = −∆r |rαi〉〈rαi |i +
1
2

Ω′r
(|g〉〈rαi |i + |rαi〉〈g|i

)
, (6.7)

where αi ∈ {�,�} depends on the lattice site of the i-th atom. In the weakly-dressing regime, ∆r � Ωr,
the new dressed ground states are |�〉i ≡ |g〉i + Ωr/(2∆r)|r�〉i or |�〉i ≡ |g〉i + Ωr/(2∆r)|r�〉i if αi = �

or �, respectively. Thus, each ground state atom gets a small admixture of one of the Rydberg states,
depending on the sublattice. Due to the weak admixture of the Rydberg states, the dressed ground
states get a comparatively small decay rate Γ̃ = (Ωr/2∆r)2Γ, where Γ is the decay rate of the bare
Rydberg state, which has to be much smaller than the relevant system energy scales discussed below.

6.3.2 Interactions between p-states

Below we will consider the van der Waals interactions, V��, V�� and V��, between pairs of atoms
prepared in the bare Rydberg states |r�〉 = |n2P3/2,m = 3/2〉z and |r�〉 = |n2P3/2,m = 3/2〉x. For Ru-
bidium atoms excited to Rydberg p-states, these van der Waals forces are strongly anisotropic [52–
55]. Fig. 6.5(a) shows the angular part of the van der Waals interaction, V��, for different n-values,
which is in very good approximation proportional to

V��(r, ϑ) ∼ (ea0)4n11

r6 sin4 ϑ, (6.8)

while the actual strength depends on the principal quantum number n and scales as n11 away from the
Förster resonance at n = 38. A detailed discussion of this scaling behavior and of the resonance origin
can be found in Ref. [54]. Similarly, one finds for the interaction between |r�〉 = |n2P3/2,m = 3/2〉x
Rydberg states

V��(r, ϑ) ∼ (ea0)4n11

r6 cos4 ϑ, (6.9)
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Channel C(ν)
6 [A.U.] 〈 3

2
3
2 |Dν(ϑ)| 32 3

2 〉
ν n = 28 n = 30 n = 32
S 1/2 + S 1/2 5.07 × 1017 1.60 × 1018 4.88 × 1018 sin4 ϑ/4
S 1/2 + D3/2 1.60 × 1016 3.72 × 1016 8.15 × 1016 (2 + cos 2ϑ) sin2 ϑ/50
S 1/2 + D5/2 1.62 × 1016 3.76 × 1016 8.26 × 1016 (209 + 84 cos 2ϑ + 27 cos 4ϑ)/2400
D3/2 + D3/2 −2.71 × 1015 −5.85 × 1015 −1.20 × 1016 (5 + 2 cos 2ϑ + cos 4ϑ)/1250
D3/2 + D5/2 −2.43 × 1015 −5.20 × 1015 −1.06 × 1016 (358 + 186 cos 2ϑ − 27 cos 4ϑ)/15000
D5/2 + D5/2 −2.15 × 1015 −4.56 × 1015 −9.16 × 1015 3(1745 − 876 cos 2ϑ + 27 cos 4ϑ)/20000

Table 6.1. Two atoms both in the |r�〉 = |n2P3/2, 3/2〉z = |np, 1〉z| 12 1
2 〉z state can couple

to six channels. Each channel ν has a characteristic angular dependency (Dν) 3
2

3
2

which contributes with weight C(ν)
6 . The total interaction can be obtained by summing

over all channels, i.e. V��(r, ϑ) = 2
∑
ν C(ν)

6 〈3
2

3
2 |Dν(ϑ)|32 3

2 〉/r6. It turns out that two
atoms in the |r�〉 Rydberg state dominantly couple to the S 1/2 + S 1/2 channel with a
characteristic angular dependence ∼ sin4 ϑ.

which can be obtained by rotating the coordinate system by π/2. Mixed interactions such as

V��(r, ϑ) ∼ (ea0)4n11

r6
(3 sin 2ϑ + 2)2 , (6.10)

are shown in Fig. 6.16 (App. 6.D) and have two asymmetric maxima at ϑ = ±π/4. The Rydberg states
|r�〉 and |r�〉 therefore realize the desired angular interaction properties as discussed in Sec. 6.2.2. To-
gether with the possibility of creating soft-core potentials (see the following subsection), the anisotropy
of these interactions leads naturally to the desired interaction pattern illustrated in Fig. 6.1(b) and de-
manded by Eq. (6.6). These interactions underly our realization of the Bose Hubbard Hamiltonian
(6.4).

We now detail the physical mechanism which generates these anisotropic interactions, and de-
scribe how to derive the aforementioned results. Van der Waals interactions between two atoms i and
j prepared in a given Rydberg state arise from the exchange of virtual photons: atom i in a Rydberg
state |ri〉 can for example virtually undergo a dipole allowed transition to a lower-lying electronic state
|α〉 while emitting a photon. If this virtual photon reaches atom j during its lifetime, it can excite the
second atom to an electronic state |β〉. This then leads to correlated oscillations of instantaneously
induced dipoles in both atoms which give rise to the non-retarded van der Waals force [74]. For the
familiar case of s-states these interactions are isotropic, VVdW(r) = C6/r6 with the van der Waals co-
efficient C6 scaling as C6 ∼ n11 [52–55]. Here, n is the principal quantum number and r the distance
between atoms. These van der Waals interactions between Rydberg states exceed ground state inter-
actions by several orders of magnitude and have been observed and explored in recent experiments
[23–37].

In the case of Rydberg p-states, the angular distribution of these emission and absorption pro-
cesses of virtual photons in combination with the angular momentum structure of the atomic orbitals
leads to nontrivial anisotropic van der Waals interactions [52–55]. We now focus on the van der
Waals interaction V��, between both atoms in the |r�〉 = |n2P3/2,m = 3/2〉z Rydberg state with quan-
tization axis along the z-direction. Mixed interactions, V��, and interactions between both atoms in
the |r�〉 = |n2P3/2,m = 3/2〉x Rydberg state, V��, will be derived in App. 6.C. The latter can simply



102 Publication: Quantum Spin Ice and dimer models with Rydberg atoms

(c)

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0(a) (b)

0.1
0.2
0.4
0.6
0.8
0.9

(d)

1

4

5 6

7

3

2 8

Figure 6.6. (a) Qualitative sketch of the energy levels (black lines) and lasers (thick solid
dark-blue arrows) required for the Rydberg dressing scheme. The ground state |g〉 of each
atom is off-resonantly coupled to a Rydberg state |ri〉 with a c.w. laser of Rabi frequency Ωr

and detuning ∆r (see also Fig. 6.4). Pairwise interactions between the energetically well-
isolated Rydberg states can be anisotropic, i.e. Vi j(r) = A(ϑ)/r6. (b) Energy eigenvalues Ṽ(r)
of Eq. (6.14) (dressed Born-Oppenheimer potential surfaces) of Rydberg-dressed ground state
atoms for different values of the Condon radius rc defined in Eq. (6.15). The potential has a
step-like shape and saturates for small distances at Ṽ0, while the onset of the steep slope is
given by rc. (c) Contour plot of the dressed ground state interaction Ṽi j(r)/Ṽ0 between the
atom in the middle (yellow circle) and the surrounding atoms (black circles) arranged on a
square lattice all in the |r�〉 Rydberg state. In this case A(ϑ) ∼ sin4 ϑ which gives rise to
a figure-eight shaped interaction plateau (yellow dashed lines). Residual interactions along
ϑ = 0 come from virtual transitions to D-states (see Sec. 6.3.2). (d) Labeling of the lattice sites
for the example of Sec. 6.3.4.

be obtained by rotating the xz-plane by 90 degrees, i.e. V��(r, ϑ) = V��(r, ϑ − π/2), while in order to
calculate mixed interactions one has to calculate off-diagonal matrix elements in the n2P3/2 manifold.

In general, van der Waals interactions arise as a second order process from dipole-dipole interac-
tion, V̂ (i j)

dd (r) =
(
d(i) · d( j) − 3(d(i) · n)(d( j) · n)

)
/r3, where Vdd couples the initial Rydberg states |ri, r j〉

to virtual intermediate states |α, β〉 and back. Here, d(i) is the dipole operator of the i-th atom and
r = rn = (r, ϑ, ϕ) is the relative distance between atom i and atom j with n a unit vector and (r, ϑ, ϕ)
the spherical coordinates. It is convenient to rewrite the latter expression in a spherical basis [75]

V̂ (i j)
dd (r) = −

√
24π

5
1
r3

∑
µ,ν

C1,1;2
µ,ν;µ+νY

µ+ν
2 (ϑ, ϕ)∗d(i)

µ d( j)
ν , (6.11)

with d(i)
µ the spherical components (µ, ν ∈ {−1, 0, 1}) of d(i), C j1, j2;J

m1,m2;M the Clebsch-Gordan coefficients,
and Ym

l the spherical harmonics.

Due to the dipole selection rules, states in the n2P3/2 manifold can only couple to states in a
n′S 1/2, n′D5/2 or n′D3/2 manifold. It turns out that for 87Rb the dominating channel is P3/2 + P3/2 −→
S 1/2 + S 1/2, which can be explicitly seen from Table 6.1 for various n levels. In order to simplify the
following discussion we will first focus on this channel and neglect all other channels including D3/2
and D5/2 states which lead to small imperfections discussed in App. 6.C.

For a single atom, the |n2P3/2,
3
2 〉 state is a stretched-state which reads in the uncoupled basis

|n2P3/2,
3
2 〉 ≡ |np, 1〉 ⊗ |12 , 1

2 〉. Thus, it can be factorized into an angular and a spin degree of freedom.
Since the dipole-dipole interaction, V̂dd(r), does not couple spin degrees of freedom, the angular
dependence of the van der Waals interaction is determined solely by the angular part of the wave
function, which is |np, 1〉.

Figure 6.5(b) illustrates the interaction between two atom initially prepared in a |np, 1〉 state as a
function of ϑ for ϑ = 0 (atom A and B) and ϑ = π/2 (atom A and C). We first consider atom A in the
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lower left corner of Fig. 6.5(b). Initially prepared in a |np, 1〉 state it can make a virtual transition to a
lower-lying |ns, 0〉 state [red arrow in the lower left panel of Fig. 6.5(b)] while emitting a photon. The
corresponding angular distribution of the spontaneously emitted photon has the same characteristic as
light emitted by a classical dipole tracing out a circular trajectory in the x-y plane [75]. In general, it
is elliptically polarized with cylindrical symmetry, but in particular there are two specific directions:

(i) light emitted along the z direction (ϑ = 0) is circularly polarized, rotating in the same way
as the dipole. Thus, a photon emitted in the z direction has polarization σ+ and carries one unit of
angular momentum such that the total angular momentum of the combined system atom-photon is
conserved. A second atom, labeled as atom B in Fig. 6.5(b), located on the z axis (ϑ = 0) cannot
absorb this photon [see red arrow in the upper left panel of Fig. 6.5(b)], since only a |n′s, 0〉 state is
available. The same result can be derived from Eq. (6.11), which for ϑ = 0 simplifies to

V̂ (i j)
dd (ϑ = 0) = − 2

r3

∑
µ

d(i)
µ d( j)
−µ

(1 − µ)!(1 + µ)!
, (6.12)

and couples only states with initial magnetic quantum number m1, m2 to states with m1 ± 1, m2 ∓ 1,
such that the total angular momentum M = m1 + m2 is conserved. Therefore, the dipole-dipole matrix
element vanishes, 〈np1, np1|V̂ (AB)

dd (ϑ = 0)|ns0, n′s0〉 = 0, and hence atoms A and B do not interact.

(ii) light emitted into the x-y plane (ϑ = π/2) is linearly polarized, with a polarization vector
lying in the x-y plane and perpendicular to the emission direction. A third atom, labeled as atom C in
Fig. 6.5(b), located on the x axis is able to absorb this linearly polarized photon emitted by atom A,
which in the frame of atom C corresponds to a superposition of σ+ and σ− polarized light [see red
arrows in the right panel of Fig. 6.5(b)]. For ϑ = π/2, Eq. (6.11) contains a sum over cos[π2 (µ + ν)],
and the only non-vanishing combinations for µ = −1 are ν = ±1. Thus, the dipole matrix element
〈np1, np1|V̂ (AC)

dd (ϑ = π/2)|ns0, n′s0〉 is non zero and atom A and C will interact.

In general, for the dominant channel P3/2 + P3/2 −→ S 1/2 + S 1/2 only the term d(1)
−1d(2)

−1 with
µ = ν = −1 in Eq. (6.11) can contribute to the dipole-dipole matrix element and thus the van der Waals
interaction between both atoms in a n2P3/2,m = 3/2 states becomes V (n)

3
2 ,

3
2
(r, ϑ, ϕ) ∼ (Y−2

2 )2 ∼ sin4 ϑ

for this channel. Residual interactions at ϑ = 0 and π come from couplings to D3/2,5/2 channels which
are small, see Tab. 6.1. Thus, using Rubidium n2P3/2 states with m j = 3/2 allows an almost perfect
realization of an anisotropic interaction with vanishing interaction along one axis and large interaction
along a perpendicular axis. Note that interactions between two atoms in a |n2P3/2,m = 3/2〉 are
negative (attractive) for n > 38 and positive (repulsive) for n < 38, where a Förster resonance at
38P3/2 + 38P3/2 −→ 38S 1/2 + 39S 1/2 changes the sign of the interaction [52–55]. Figure 6.5(a)
shows the result of the the full calculation of the van der Waals interactions between n2P3/2, 3/2 states
including all channels and summing over n′ and n′′ levels between n± 10. The full calculation agrees
well with the simplified picture discussed above and illustrated in Fig. 6.5(b) since the dominating
channel is the one coupling to S 1/2 states. Moreover, it is in full agreement with previous studies on
anisotropic interactions between Rb Rydberg states [54].

6.3.3 Soft-core potentials

In the previous section we showed how to engineer the anisotropic part of the interactions required by
Eq. (6.6). We now briefly review how to create soft-core potentials by weakly admixing the Rydberg
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Figure 6.7. Soft core potentials (in units of Ṽ0) of Eq. (6.14) between n2P3/2, m j = 3/2
Rydberg states with (a) n = 25, A(π2 , 0) = 2π × 6.3 MHz µm6 (b) n = 30, A(π2 , 0) =

2π×114.8 MHz µm6, (c) n = 36, A(π2 , 0) = 2π×4.8 GHz µm6 and (d) n = 38, A(π2 , 0) =

2π × 390.0 GHz µm6. Here, x̃ = x/rc(π2 , 0) and z̃ = z/rc(π2 , 0) are dimensionless, with
rc defined in Eq. (6.15). Residual interactions along the z-direction come from virtual
transitions to D-channels and depend on the principal quantum number n, see Tab. 6.1.

states to the atomic ground state [56, 59]. This guarantees that interactions between atoms sitting on
a square lattice at different distances a and

√
2a experience the same interaction potential [76], as

required by Eq. (6.6) and illustrated in Fig. 6.1(b).

The single atom configuration we have in mind was introduced in Sec. 8.B and is governed by
the Hamiltonian of Eq. (6.7). Pairwise interactions [see panel (a) of Fig. 6.6] between N atoms both
excited to the Rydberg states |ri〉|r j〉 are described by

Hi j(ri j) = Vi j(r)|ri〉〈ri| ⊗ |r j〉〈r j|, (6.13)

where Vi j(ri j) = Ai j(ϑi j, ϕi j)/r6
i j is the van-der-Waals interaction potential between the Rydberg states

of atom i and atom j discussed in the previous section and (ri j, ϑi j, ϕi j) are the spherical coordinates
of the relative vector.

Following the s-state case [57–60], Brillouin-Wigner perturbation theory up to fourth order in the
small parameter Ωr/(2∆r) � 1 results in a sum of binary interaction between the dressed ground state
atoms of the form

Ṽi j = 2∆r

(
Ωr

2∆r

)4 r6
c (ϑi j, ϕi j)

r6
c (ϑi j, ϕi j) + r6

i j

, (6.14)

with

rc(ϑi j, ϕi j) =

(
Ai j(ϑi j, ϕi j)

2|∆r |
)1/6

(6.15)

being the Condon radius. In the case of p-Rydberg states, where the interactions are anisotropic, the
Condon radius depends on the angular pattern of the van der Waals interaction A(ϑ, ϕ) which can
be tuned by choosing a particular Rydberg state. Additionally, the Condon radius can be scaled by
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changing the detuning ∆r of the dressing laser. Figure 6.6(b) shows typical examples of the dressed
ground state potential, Ṽi j, for red detuning ∆r < 0 and repulsive interactions Vi j > 0, for different
Condon radii, rc. For large distances, r � rc, the dressed ground state potential is proportional
to the Rydberg interaction, Ṽi j = Ω4

r/(2∆r)4Vi j ∼ 1/r6
i j, reduced by a factor [Ωr/(2∆r)]4 arising

from the small probability to excite both atoms to the Rydberg state. However, for small distances,
r < rc, when two atoms are within the Condon radius, the excitation to the Rydberg states becomes
ineffective due to the large total detuning |∆r | + Vi j (Dipole blockade), and the effective ground state
interaction, Ṽi j ≈ Ṽ0[1 − (r/rc)6] for r < rc, saturates at a constant value Ṽ0 = Ω4

r/(2∆r)3, which is
independent of the strength or form of the Rydberg-Rydberg interactions. The presence of a plateau
at short distances, r < rc and a rapid decrease of the potential at r ∼ rc, where Ṽi j ∼ 1/r6

i j, allows
to engineer approximately equal interactions between atoms within rc independent of their specific
distance. At the same time, long-range interactions, between e.g. next-nearest-neighbors (NNN), are
substantially suppressed.

Combining the step-like ground state potentials of Eq. (6.14) with anisotropic interactions dis-
cussed in the previous section leads to figure-eight shaped plateau potentials shown in Fig. 6.6(c).
Here, atoms (black circles) interact with J, J′ and J′′ along the ± 45-degree lines, the x-axis and the
z-axis, respectively, with the atom in the middle (yellow circle). It is possible to tune the interaction
strength J, J′ and J′′ over a large range by e.g. changing the detuning, ∆r, or the principal quantum
number, n, of the Rydberg state. In particular one can realize an interaction pattern where atoms
sitting at different distances, a and

√
2a, interact with equal strength, that is J ≈ J′, while J′′ � J,

thus realizing a frustrated J − J′ model. Note that the interaction symmetry in this case is triangular
on top of an square lattice.

6.3.4 Explicit numbers and discussion of imperfections

As an explicit example we consider the 29 2P3/2 Rydberg manifold of 87Rb. We resonantly couple the
29 2P3/2 manifold to the lower-lying 7 2D3/2 manifold, as illustrated in Fig. 6.4 (n = 29 and n′ = 7),
with a laser of wavelength λAC = 3.296 µm. This results in a lattice spacing a = λAC/(2

√
2) =

1.16 µm which can be adjusted by tilting the trapping lasers by an angle α = 39 degrees (see Sec. 8.B).

For the van der Waals interactions between the Rydberg states |r�〉 = |29 2P3/2, 3/2〉z and |r�〉 =

|29 2P3/2, 3/2〉x we find

V��(r, ϑ) = 2π × 25.4 − 31.9 cos 2ϑ + 8.2 cos 4ϑ
(r/µm)6 MHz,

V��(r, ϑ) = 2π × 25.4 + 31.9 cos 2ϑ + 8.2 cos 4ϑ
(r/µm)6 MHz,

V��(r, ϑ) = 2π × 16.8 − 8.2 cos 4ϑ + 20.3 sin 2ϑ
(r/µm)6 MHz,

(6.16)

including all channels of Tab. 6.1 and summing over ±10 n-values (see App. 6.C and 6.D). They are
plotted in Fig. 6.5(a) and Fig. 6.16. The largest off-diagonal matrix element coupling different Zee-
man m-levels is Voff(a) = 〈3

2
3
2 |V̂vdW(a, π/2)| 12 1

2 〉 = 2π×11.2 MHz. Using an AC Stark laser with power
P = 1.0 mW focused on a area A = 50 µm2 yields a Rabi frequency ΩAC = 2d7D−29PEAC/~ = 2π × 205.5 MHz,
where d7D−29P = 〈7D3/2, 3/2|d|29P3/2, 1/2〉 = 0.065 ea0 is the smallest transition dipole moment and
EAC =

√
2P/cε0A is the electric field strength. The AC Stark lasers will create an additional ground
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Figure 6.8. (a-b) Low energy spectra of H (in units of Ṽ0) versus J⊥ for N=32 (a) and
36 (b), in the total magnetization sector S z =0 and for cutoff Jc =0.001. (c) Low energy
spectra of the constrained, spin-ice model H2 versus t for 64 sites. The eigenstates are
labeled by linear momentum k, the irreducible representations of the point group of
k (the point group of the model is C2v), and parity under spin inversion (”Sze” and
”Szo” stand for even and odd parity, respectively). Numbers inside parentheses give
the multiplicity of each energy level.

state potential with depth VAC = 2π×27.8 kHz thus the initial trapping potential, Vtrap, must be larger
than VAC , see App. 6.A.

Adjusting the detuning ∆r of the Rydberg laser allows to tune the length scale and the imper-
fections in Eq. (6.14). These are (i) small long-range interactions between nearest-neighbor lat-
tice sites and (ii) deviations form the constraint model of Eq. (6.6). Here, for example we use
∆r = 2π × 400 kHz which yields the following interaction pattern between particles labeled in
Fig. 6.6(d): Ṽ14/Ṽ0 = Ṽ23/Ṽ0 = 0.96, Ṽ13/Ṽ0 = Ṽ24/Ṽ0 = 0.80, Ṽ12/Ṽ0 = Ṽ34/Ṽ0 = 0.70 around a
vertex and small imperfect interactions between different vertices, e.g. Ṽ15/Ṽ0 = Ṽ28/Ṽ0 = 0.09 and
next-nearest-neighbor interactions e.g. Ṽ16/Ṽ0 = Ṽ27/Ṽ0 = 0.12 or Ṽ18/Ṽ0 = Ṽ25/Ṽ0 = 0.01.

By varying the Rabi frequency of the Rydberg laser Ωr = 2π×(120, 160, 200) kHz one obtains ε =

Ωr/2∆r = (0.15, 0.20, 0.25) which gives rise to an effective ground state interaction Ṽ0 = Ω4
r/8∆3

r =

2π × (405, 1280, 3125) Hz. This is much larger than the effective decay rate from the dressed ground
state Γ̃ = ε2Γ = 2π × (74, 132, 206) Hz, and larger than a corresponding tunneling rate between the
minima. Here, Γ = 2π × 3.3 kHz is the decay rate form the Rydberg states.

There is an ample choice in the parameter regimes available as a function of the n-level. Away
from the Förster resonance at n = 38, it is possible to engineer infra-red lattices which allow for
comparable timescales between the interactions induced by the dressing, and the tunneling matrix
elements of the atoms on the original square lattice. Going higher in n, closer to the Förster resonance,
allows faster timescales and slower decays: however, in this case the infra-red laser has a strong
influence on the underlying lattice, excluding the possibility of using conventional single particle
tunneling to induce quantum fluctuations. On the other hand, one can profit here from the richness of
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the Rydberg manifolds involved, realizing the hopping matrix element as a spin-exchange coupling
between different atoms sitting at different potential minima 1. In both cases above, the interaction
pattern will depend on the specific targeted n, as discussed in Sec. 6.3.2. As the qualitative (and in
many respects quantitative, as indicated in Table 6.1 and Fig. 6.7) shape of the interactions will be
very similar in the interval of interest n = 25 − 37, we will focus in the following on a single case
sample to underpin the stability of the many-body effects we are interested in.

6.4 Numerical results

In this section, we consider the properties of the approximate realization of the quantum spin ice
model Hamiltonian proposed above. We demonstrate that, as a function of the strength of the quantum
dynamics, the ground state has two regimes reflecting two distinct forms of ordering (Sec. 6.4.2).
One, stabilized via a quantum order by disorder mechanism, generates the above mentioned plaquette
phase for sufficiently strong quantum dynamics. As it is weakened, there is a transition into a phase
with classical ordering, which is stabilized by the long-range parts of the dipolar couplings and which
breaks translational symmetry in a different way. In addition, we show that even without quantum
dynamics, there is an interesting thermal phase transition to an approximate realization of a (classical)
Coulomb phase, with only a very small density of defects (plaquettes violating the ice rule) of around
5% (Sec. 6.4.3). We discuss signatures of these items in various quantities, in particular proposing a
simple correlation function in which the quantum plaquette order will be visible, and which should
be accessible in cold atom experiments via in-situ parity measurements [33, 77, 78].

6.4.1 General definitions and conventions

We begin with some general definitions and technical details of our numerical study. We consider
both the unconstrained spin-1/2 model H from by Eq. (6.5), as well as the projected model H2 inside
the spin ice manifold:

H =
∑
i< j

Ji jS z
i S

z
i + J⊥

∑
〈i j〉

(
S +

i S −j + S −i S +
j

)
H2 =

∑
i< j

Ji jS z
i S

z
j − t

∑
j
i 2

k
l

(
S +

i S −j S +
k S −l + h.c.

)
.

Here 〈i j〉 denote nearest-neighbor (NN) sites on the 2D checkerboard lattice, and (i jkl) label clock-
wise the four sites around empty square plaquettes. Note that only the empty plaquettes with alter-
nating up-down spins (or ‘flippable’ plaquettes) contribute to the second term of H2. In our Exact
Diagonalizations (ED) we have considered finite-size clusters with periodic boundary conditions and
N=16, 32, 36, 64 and 72 sites, see details in App. 6.E. To treat these clusters with ED, we exploit
translational symmetry, point group operations (the model has C2v symmetry), as well as spin inver-
sion (S z→−S z) inside the total magnetization sector S z =0. Consequently, the eigenstates are labeled
by linear momentum k, the irreducible representations of the point group of k, and the parity under
spin inversion.

1A. W. Glaetzle, et. al., in preparation
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(b) N=64, spin−ice manifold, t=0.1(a) N=32, full Hilbert space, J
!
=0.1 (c) N=64, spin−ice manifold, t=1

plaquette phase: energy correlationsClassical phase: spin−spin correlations

Figure 6.9. Ground state diagnostics of the classical (a-b) and the QM plaquette
(c) phases: Spin-spin correlation profiles (of the type 〈S z

i S
z
j〉, where i is the reference

site, indicated by filled black square) in the ground state of (a) H for N=32 and J⊥ =

0.1, and (b) H2 for N=64 and t = 0.1. Filled blue (open red) circles corresponds to
positive (negative) amplitude. (c) Connected energy correlation profiles (of the type
〈S z

i S
z
jS

z
kS z

l 〉− 〈S z
i S

z
j〉〈S z

kS z
l 〉, where the reference bond (i j) is indicated by the thick

black segment) in the ground state of H2 for N=64 and t = 1. Solid blue (dashed red)
bonds indicate positive (negative) amplitudes, while the width of each bond scales with
the magnitude. All data correspond to the symmetry sector “0.A1.Sze” and are taken
for cutoff Jc =0.001.

We note that, whereas the quantum phase is quite robust, the classical phase is considerably
less so, reflecting the many nearly-degenerate classical ice states. We illustrate this in App. 6.F by
imposing a variable cut-off on the long-range aspect of the dipolar couplings Ji j: by neglecting terms
weaker than a cutoff Jc, we find a set of states with different classical orders, which settle down into
the correct ground state without truncation for Jc no larger than 0.001.

6.4.2 The two zero-temperature phases: Low-energy spectroscopy and ground state
diagnostics

Figure 6.8 shows the low energy spectra of H as a function of J⊥ for N=32 (a) and N=36 (b), and that
of H2 as a function of t for N=64 (c). All spectra correspond to the total magnetization sector S z = 0
and a cutoff value of Jc = 0.001. In all spectra, there is a manifold of low-lying states that is well
separated from higher-energy excitations. Provided they become degenerate in the thermodynamic
limit, these states are the finite-size fingerprints of the spontaneously symmetry broken phases [79–
83]: their multiplicities and symmetry content reveal the nature of the ground state. The structure
of the low-lying energy states show consistently two qualitatively different phases. One, which is
adiabatically connected to the classical limit J⊥=0, and the other which is stabilized for large enough
J⊥ or t.

We begin with the classical phase, focusing on the N=32 (a) and N=64 (c) results first. Here
we find four low-lying states which become exactly degenerate as J⊥ → 0. We find translational
symmetry breaking with ordering wavevector Q = (−π2 , π2 ), as illustrated in Fig. 6.3(c). The nature
of this phase is revealed by the spin-spin correlation profiles of Figs. 6.9(a-b), with alternating up-
down spins along one of the two diagonal directions of the lattice. The vanishing of correlations on
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Figure 6.10. Various expectation values in the ground state of H for N=16 (left
column) and 32 (right column), for cutoff Jc = 0.001. The first two panels in each
column show the NN spin-spin correlations for all symmetry inequivalent bonds (inset)
in the longitudinal and transverse (xy) channel. The bottom panels show the square of
the total magnetization per crossed plaquette, which is a measure of the weight from
states outside the spin ice manifold.

every second diagonal line arises due to the existence of two states compatible with the non vanishing
correlations on the other diagonals. For a finite cluster, these appear with equal weight and thus
average out, while in the thermodynamic limit, symmetry breaking selects either one of the two
spontaneously. Finally, the N=36 cluster cannot accommodate the Q = (−π2 , π2 ) phase (see App. 6.F),
which is why the low-lying sector of Fig. 6.8(b) has a different structure (and, in fact, higher ground
state energy per site, see Table 6.2).

Turning to the quantum phase, the N=32 and 64-site spectra give the onset of this phase around
J⊥ ' 0.23 and t' 0.28, respectively. Beyond this point, the spin structure factor (not shown) is com-
pletely structureless, indicative of the absence of magnetic (classical) ordering. Since the imperfec-
tions in the present spin-ice model are expected to become irrelevant for large enough J⊥, this phase
must be the plaquette phase of the pure spin-ice model [11, 71] and the pure Heisenberg model [84].
The standard diagnostic for this phase is the dimer-dimer (or energy-energy) correlations, and in-
deed the correlation profiles of Fig. 6.9(c) show a strong Q = (π, π) response within one sublattice
of empty plaquettes. This is consistent with the structure of the low-lying spectra which show two
low-lying states with momenta k = 0 and (π, π) which come almost on top of each other for N=64,
see Fig. 6.8(c). Note that for N=32, there is a third low-lying state (with k = 0) which is however
not related to the physics at the thermodynamic limit but it is specific to the special topology of this
cluster 2.

Further information about the two phases is given in Fig. 6.10, which shows the GS expectation
values of the longitudinal and transverse NN spin-spin correlations for all symmetry-inequivalent

2Such “extra” low-lying states are also present in the pure Heisenberg model and are related to extra symmetries of the
32-site cluster [84]
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Figure 6.11. Dispersion of the lowest eigenvalue λ1(k) (in units of Ṽ0) of the dipo-
lar interaction matrix Λ(k) (in the thermodynamic limit) for four different values of
cutoffs.

bonds, as well as the square magnetization of crossed plaquettes. The former describe how the en-
ergy is distributed over the bonds and over the different directions in spin space, while the latter is
a measure of the admixture from states outside the spin ice manifold. First, the NN correlations
show that the spins fluctuate mostly along the z-axis for small J⊥, as expected. More importantly,
most of the energy comes from antiferromagnetic bonds along one of the two diagonal directions
(bonds labeled ‘s1c2’ in the inset of Fig. 6.10), which is a clear signature of the presence of strongly
asymmetric spin-spin correlations in this regime. This asymmetry, which is inherited by the point
group symmetry (C2v) of the model, is more directly revealed in the spin structure factor discussed
above. Second, the qualitative change in the behavior of the NN correlations around J⊥∼0.2, reflects
the presence of the phase transition in this region. Finally, the square of the total magnetization per
crossed plaquette reveals that the spin-ice manifold remains well protected up to relatively high J⊥.
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Figure 6.12. Temperature dependence of the structure factor S(Q) (left), the specific
heat per site, in units of Boltzmann’s constant kB (middle) and the monopole densities
for systems up to N=2x28x28 sites, for J⊥ = 0 and cutoff Jc = 0.001. Temperature is
given in units of Ṽ0.

6.4.3 Further insights in the classical limit J⊥ = 0

Momentum space minimization

The nature of the classical phase and the role of the dipolar couplings can be understood in more detail
by a closer examination of the limit J⊥ = 0 using a classical minimization treatment in momentum
space [85–88]. The checkerboard lattice has a square Bravais lattice with two sites per unit cell. In
the following, sites are labeled as i→ (R, α), where R gives the position of the unit cell, and α= 1-2.
For J⊥=0, we can replace S z

i → 1
2σi, where σi =±1. The total energy then reads E = 1

4 E′, where

E′ =
1
2

∑
RR′,αα′

JRα,R′α′σR,ασR′,α′ .

Using σR,α= 1√
Nuc

∑
k eik·Rσk,α, where Nuc = N/2 is the number of unit cells, and JRα,R′α′ = JR−R′,αα′

(from translational invariance), yields

E′ =
1
2

∑
k

∑
αα′

σk,αΛαα′(k)σ−k,α′ ,

where the 2 × 2 interaction matrix Λ(k) is given by

Λαα′(k) ≡
∑

r
Jr,αα′e−ik·r .

Let us denote by λ1,2(k) and v1,2(k) the eigenvalues and the corresponding (normalized) eigenvectors
of Λ(k), with λ1(k) ≤ λ2(k). Minimizing λ1(k) over the entire BZ of the model provides a lower
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bound for the energy [85–88]. The corresponding eigenvector is a faithful ground state provided it
satisfies the spin length constraint at all sites.

The minimization can be done both for the infinite lattice and for the finite lattices studied by ED
by simply scanning through the allowed momenta of each cluster. The latter are discussed in App. 6.F
and are useful for clarifying the various finite-size effects in our ED data. Here we focus on the infinite
lattice case. Figure 6.11 shows the momentum dependence of the low-energy branch λ1(k) for cutoff

values Jc =0.3, 0.1, 0.01 and 0.001. For Jc = 0.3, which amounts to keeping only the dominant, NN
couplings (i.e. three couplings per site), the minimum sits at Q = (π, π) and corresponds to the well-
known Néel phase with AFM correlations along both the horizontal and the vertical directions of the
lattice. This phase is stabilized by the imbalance in the NN imperfections, which favors the first two
vertex configurations in Fig. 2(b). However, further-neighbor interactions destabilize the Néel phase
and lead to a different minimum. For Jc = 0.1, which amounts to keeping seven interactions per site,
the minimum of λ1(k) now sits at the two M points of the BZ, Q= (π, 0) and (0, π), which correspond
to a stripy AFM alignment of the spins in the horizontal or the vertical direction of the lattice.

Lowering Jc further shifts the minimum to two incommensurate (IC) positions, ±QIC , which
are extremely close to the commensurate ±(−π/2, π/2) points. For example, for Jc = 0.01 (12 in-
teractions/site), Jc = 0.001 (31 interactions/site) and Jc = 10−6 (299 couplings/site), the minima sit
respectively at QIC =0.473(−π, π), 0.457(−π, π) and 0.462(−π, π). At the same time, the correspond-
ing eigenvector v1(QIC) cannot be used to construct a state satisfying the spin length constraint at all
sites of the system simultaneously. This means that the present method cannot deliver the true ground
state of the system and that λ1(QIC) serves only as a lower energy bound.

Physically, the system may accommodate the tendency for incommensurate correlations by form-
ing long-wavelength modulations of the local (−π/2, π/2) order parameter, in analogy e.g. to the
anisotropic Ising model with competing interactions (the so-called ANNNI model) [89–92]. We
should remark however that the energy landscape around the IC minimum is very flat and its dis-
tance from (−π2 , π2 ) is very small, so in principle such discommensurations (if any) should appear
at much longer distances than the ones considered in our finite-lattice calculations, and indeed the
length scales over which cold atom realizations are uniform (in both density and interaction patterns)
on account of the parabolic confining potential. To confirm this point we have performed classical
Monte Carlo (CMC) simulations on N =2×L×L-site clusters with periodic boundary conditions, see
details in App. 6.G. All results up to L = 36 give consistently the (−π2 , π2 ) state without any sign of
domain-wall discommensurations, implying that at least for these distances the system locks-in to the
closest commensurate Q = (−π/2, π/2) phase.

Thermal phase transition into a classical Coulomb phase

Given the finite energy gap above the commensurate Q = (−π2 , π2 ) state at J⊥ = 0 (see Fig. 6.8), one
expects that this phase survives against thermal fluctuations up to a finite temperature TC . To confirm
this picture, and to find the numerical value of TC , we have performed classical MC simulations at
finite temperatures. The first two panels of Fig. 6.12 show the T-dependence of the structure factor
S(Q) at Q = (−π/2, π/2), and the specific heat per site for systems up to N=2x28x28 sites. The
results demonstrate clearly the thermal phase transition, with TC ' 0.185. The third panel shows the
T-dependence of the three different types of crossed plaquette configurations: the ice-rule 2in-2out
states, and the defected 3up-1down (or 3down-1up) states and 4-in (or 4-out) states. The defects
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are almost entirely of the 3up-1down type, but their density remains very small up to the transition
temperature (about 5%). So the classical phase gives way to a Coulomb gas [65, 66], an approximate
realization of a classical Coulomb phase, with only a very small density of defects. This phase is
marginally confined on account of the logarithmic nature of the interactions between the defects;
given the non-vanishing defect density above TC , their correlations are expected to exhibit a screened
(Debye) form [93].

6.5 Quantum dimer models with Rydberg atoms: beyond quantum ice

6.5.1 Simple interactions, complicated lattices

As we have shown in the spin ice example, weakly Rydberg-dressed atoms in optical lattices pro-
vide a perfect platform to investigate quantum magnetism in AMO settings. The procedure can be
extended to a series of 2D and 3D models using isotropic interactions, either using s- (whose cor-
responding frozen regimes have already been accessed in a series of experiments [23–37, 94]) or
p-states (with out-of-plane polarization in the 2D case) combined with complicated lattice structures.
This way, the complication of realizing fine-tuned interaction pattern is transferred to a complicated
lattice geometry, which might be realized provided the correspondent light-pattern is realizable.

The fundamental features of those complicated lattices is the fact that sharp plateau, isotropic
interactions, are sufficient to define a classical limit where there is a set of degenerate classical ground
states, increasing extensively with system size. Given the shape of the interactions, one can identify
the possible lattices as follows. First, we define as b the largest distance between sites belonging to the
same simplices [8] (or gauge cell), that is, the unit cell where the Gauss law of interest is defined (in
the spin ice case, these are the squares with crosses). Secondly, we define as c the smallest distance
between sites which do not belong to the same gauge cell. It is then clear that, in the case where
b < c, a plateau interaction of range b < rbc < c can generates the desired constraint in each gauge
cell. In case this is not true (like, e.g., in the square ice case), additional features are needed such as
angular dependence.

Some examples of the lattices which satisfy the previous property are illustrated in Fig. 6.13,
together with the corresponding gauge cells. The list includes several 2D lattices which have already
been realized in AMO settings, such as the Kagome lattice with triangular gauge cells (but not with
hexagonal gauge cells), the Ruby lattice and the Honeycomb lattice. In the 3D case, a simple example
is the pyrochlore lattice, already discussed in Ref. [39] in the context of polar gases. Interestingly, in
this former case, dipolar interactions behave in a very similar manner to simple plateau-like ones due
to their symmetry content [95].

Once taken at filling factor of an integer number of particles per gauge cell for the underlying
Bose-Hubbard Hamiltonian, all of those lattices generate in perturbation theory quantum dimer or
quantum loop models [8]. These are naturally described by emergent gauge theories: however, the
gauge symmetry itself is not always straightforwardly determined given the gauge symmetry of the
microscopic constituents 3. The procedure to derive the proper dimer model dynamics given a lattice

3This is the case, e.g., of the Kagome Bose-Hubbard model with the hexagonal cell as gauge cell, where the proper
low-energy theory is a Z2 gauge theory which can undergo deconfinement, and thus stabilize a spin-liquid phase.
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(a) (b)

Figure 6.13. Lattices possessing the properties discussed in Sec. 6.5.1: Panel (a) shows a
kagome lattice with triangles as gauge cells (shaded area) and panel (b) a honeycomb lattice
with hexagons as gauge cells. In both cases, the maximal intraplaquette euclidean distance
(yellow dashed circle) is smaller than the minimal interplaquette distance (gray arrow). The
radius of the needed plateau-like interaction is described by the yellow circles.

and an Ising constraint is outlined in Ref. [8]. Below, we illustrate a simple example of how compli-
cated lattices can meet simple interactions to let a quantum dimer model emerge by focusing on the
concrete example of the 4-8 lattice.

6.5.2 Emergent quantum dimer dynamics on a 4-8 lattice from an XXZ model

The 4-8 lattice (also known as CAVO lattice) [96] represents a useful example to illustrate how the
combination of a complicated lattice with simple Ising interactions can lead to intriguing quantum
dynamics. The lattice structure for the underlying bosons we start from is the squagome lattice [97,
98], illustrated in Fig. 6.14: once the triangles are identified as the gauge cells, it is easy to see that
b = a, c =

√
2a, so that a plateau interaction of range 1 < r/a <

√
2 can indeed enforce constraints

on the gauge cells. Since each site is shared by 3 gauge cells, a filling fraction of n = 1/3 atoms per
site, combined with the plateau interactions, will generate a degenerate manifold H4−8 of classical
ground states where for each triangle a single site is occupied [see Fig.6.14(b)].

When formulated in spin language with S z
j = n j − 1/2, the Hamiltonian

HIs
4−8 = Jz

∑
4

∑
{i, j}∈4

S z
jS

z
i (6.17)

has (trivially) a set of U(1)-like conserved charges at each triangle, that is:

G4 =
∑
j∈4

S z
j + 1/2, G4|ψ〉 = 0 ∀|ψ〉 ∈ H4−8. (6.18)

Once an additional, small term inducing quantum fluctuations is introduced:

HEx
4−8 = J

∑
�

∑
{i, j}∈�

S +
j S −i + J̃

∑
8

∑
{i, j}∈8

S +
j S −i (6.19)

tunneling between the different classical degenerate minima becomes possible within perturbation
theory, while still preserving the set of conserved charges in Eq. (6.18). Notice that we used two
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Figure 6.14. Configuration space of the squagome lattice and gauge invariant dynamics: (a)
Atoms are disposed on a squagome pattern (filled-black circles) and interact with NN atoms
(red arrows) which all are the same distance apart (yellow dashed circle). Triangular gauge
cell are indicated as shaded areas in light blue and violet in an alternating pattern. Panel
(b) describes possible gauge invariant configurations [from Eq. (6.18)], where a configuration
with (i) two flux vectors pointing outwards (inwards) on a light blue (violet) gauge cell map
onto a configuration (ii) where a single site on each triangle is occupied (red circle) and two
lattice sites are unoccupied (white circles). Here, an arrow pointing from a violet triangle to
a light blue triangle corresponds to an occupied lattice site and vice versa to an empty lattice
site. (iii) This can be further mapped to a quantum dimer model on the 4-8 lattice. The new
sites are defined at the centre of each triangle: the bond variable between them is either empty
(thin blue line) or a dimer (thick blue line), depending on the original occupation of the site
shared by the triangles. Panel (c) illustrates a full gauge invariant configuration. Quantum
fluctuations induce non-trivial dynamics around both the square (d) and octagonal plaquettes
(e), described by Eqs. (6.20) and (6.21). Panel (f) shows the optical lattice pattern of Eq. (6.22)
as described in the text. Darker areas correspond to deeper potentials.

different matrix elements for particle tunneling around the squares (J) and around the octagons (J̃).
Two kind of moves are allowed. At second order, two particles sitting along a diagonal of a square
plaquette can resonantly flip to sit on the other diagonal:

H� ' − J2

Jz
(S +

1 S −2 S +
3 S −4 + h.c.) (6.20)

where we have numbered the sites of the square plaquette in clockwise order. The next non-vanishing
contribution takes place at fourth order, where particles sitting at the edges of each octagonal plaquette
can re-arrange via an extended ring-exchange:

H8 ' −3
J̃4

J3
z

(S +
1 S −2 S +

3 S −4 S +
5 S −6 S +

7 S −8 + h.c.). (6.21)

where we have numbered the sites of the octagonal plaquette in clockwise order. The two terms are
illustrated in Fig. 6.14(d)-(e). We now reformulate the problem in terms of dimer models, which
allows to set up a proper description in terms of effective degrees of freedom. In order to do that, we
follow the procedure exemplified in Ref. [8, 99–101], and illustrated in Fig. 6.14(b)-(c): we define a
new lattice, the so called simplex lattice, whose vertices are the middle points of each gauge cell, and
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whose bonds connect vertices of gauge cells which share a single site: each bond sits on a vertex of
the original lattice. Then, we introduce dimer variables on the bonds as follows: i) if a bond sits on a
site which is occupied by a boson, we draw a dimer, ii) if not, we leave the bond empty. This way, the
Gauss law of Eq. (6.18) is easily reformulated as a conservation law of a single dimer at each vertex.

The lattice on the top of which the quantum dimer model is defined is then a 4-8 lattice: as
it is bipartite, the corresponding low-energy theory is a U(1) gauge theory, which can then display
different confined phases as a function of the two kinetic energy terms for the dimers H8 and H�.
This setup might constitute then a perfect setting for the investigation of the competition between
different RVB solid orders and the transitions between them. The corresponding periodic structure
can be either realized using digital-micromirror-devices (DMD) [67], or by using an optical potential
of the form

V(x, z) = 4V1(x + z, x − z) + V2(x, z), (6.22)

where

V1(x, z) = cos(πx)2 + cos(πz)2 − 2 cos(0.55) cos(πx) cos(πz) (6.23)

is a 2D lattice created by two 1D standing waves with phase difference φ = 0.55 and anti-parallel
polarizations e1 · e2 = −1. The second 2D lattice is created by lasers with three times the frequency
and orthogonal polarization,

V2(x, z) = cos(3πx)2 + cos(3πz)2. (6.24)

Both lattices are rotated by 45 degrees, respectively. The full lattice structure is illustrated in Fig. 6.14(f),
and realizes the squagome lattice potential of interest.

6.6 Conclusions and Outlook

In summary, we have shown how dynamical gauge fields emerging from frustration can be ideally
realized in cold atom systems by employing optical lattices combined with Rydberg interactions.
This allows to probe gauge theory phenomena in a variety of models. In particular, we analyzed in
detail the case of quantum square ice, a paradigmatic example of frustrated statistical mechanics, both
at the few- and at the many-body level.

From the atomic physics side, the key element of our implementation is the tunable interaction
pattern generated by Rydberg p-states and local polarizations due to tensor polarizabilities. Promi-
nent atomic physics features can be exploited in order to generate (repulsive) anisotropic interactions
that allow to enforce the complex gauge constraints of square ice models. The possibility of gen-
erating such anisotropic interaction patterns enriches the cold atom Hubbard toolbox of yet another
potential feature, which can find different applications in many-body physics even beyond engineer-
ing complicated and fine tuned lattice constraints. It paves the way toward the realization of different
constrained dynamics, in particular, quantum dimer models on complicated lattices.

From the many-body side, we have provided numerical evidence that typical imperfections gener-
ated by the Rydberg interactions still allow the observation of a non-trivial state of matter, a plaquette
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valence bond crystal. Moreover, we have shown how a cold atom suited detection technique can
be identified, by performing parity measurements along the plaquettes, which directly identifies the
spontaneous symmetry breaking of a discrete lattice symmetry. Even in the absence of quantum dy-
namics, the engineered interactions stabilize a magnetically ordered state with a large unit cell at low
temperature, which gives way to a classical Coulomb gas, a marginally confining two-dimensional
Coulomb phase with a small but nonzero density of charges in the form of thermally activated pla-
quettes violating the ice rule.

Different directions can be pursued further following the lines discussed here. A first, interest-
ing extension would be to understand whether different kinds of anisotropic interactions can play a
significant role in engineered Ising constraints in cold atom systems. In particular, anisotropic inter-
actions between Rydberg d-states of 87Rb atoms have been recently demonstrated in Ref. [37]: as
their angular dependence differs from the one discussed here, it can constitute yet another tool in
order to realize complicated, fine-tuned interaction patterns. Secondly, the present proposal, which
generates pure gauge theories, can be combined in a modular way with previous ones [102] in such
a way that either fermionic or bosonic matter can be included into the dynamics. This would extend
the toolkit of quantum simulation of lattice gauge theories within the quantum link model formal-
ism. From the one hand side, quantum simulation of QED3 models with different flavor degrees of
freedom could be foreseen [103]. From the other hand side, the combination of bosonic fields, as
e.g. in Ref. [102], with the current proposal would allow for the exploration of the Fradkin-Shenker
scenario of Higgs physics in 2D [104], and possibly in more exotic geometries. Finally, cold atom
realizations can also provide a suitable platform for the investigation of dynamical effects in quantum
dimer models and gauge theories in general; it’d be interesting to see whether simple observables and
experimental procedures can be implemented, to described complex many-body phenomena such as
string dynamics [105] in the presence of static charges [40], or the dynamical properties of thermally
activated monopoles on top of a vacuum state.
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6.A Effect of the AC-Stark lasers on the ground state

The AC Stark lasers introduced in Sec. 8.B will create an additional trapping potential, VAC(ri)|g〉〈g|i,
for ground state atoms with minima not commensurate with the initial trapping lattice. In order to
not distort the desired lattice structure this additional potential must not be larger than the initial
trapping potential. The dominant effect comes from a second order Stark effect by off-resonantelly
coupling the 5S state to the first excited state 5P and is given by VAC = Ω2

5s5p/(2∆5s5p) with Rabi
frequency Ω5s5p = 2d5s5pE/~ and detuning ∆5s5p = 2πc(λ−1

5s5p − λ−1
AC). Here, d5s5p = 〈5S |d|5P〉 is the
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Figure 6.15. Contour plots of the total trapping potential, Vtot(x, z). (a) without the AC
Stark potential (α = 0) and (b) with the AC Stark potential (α = 1). Black dashed lines in
(a) show the 0.9 level lines of the AC Stark potential, VAC . The insets (i) and (ii) show the 1D
potential along the red dotted lines for (i) ky = 0 and (ii) ky = −0.5.

transition dipole matrix element and λ5s5p the transition wavelength. Fig. 6.15(a) shows the desired
trapping lattice created by two counter propagating laser beams which form a ground state potential
Vtrap(z, x) = cos2 kz + cos2 kx. The dashed black lines indicate the 0.9 level lines of the AC-Stark
potential VAC(z, x) = cos2[kAC(x − y)/

√
2] + sin2[kAC(x + y)/

√
2] with kAC = k/

√
2. The maxima

are localized at the � and � lattice sites, respectively, as required in Sec. 8.B. Fig. 6.15(b) shows the
total potential, Vtot = Vtrap + αVAC , in the case of equal strength, i.e. α = 1. The insets on top show
the 1D potential along the (i) ky = 0 and (ii) ky = −0.5 lines [red dotted lines in Fig. 6.15(a) and
(b)]. In the case of equal strength of the trapping lattice and additional lattice created by the AC-Stark
lasers the potential minima are still located at the same position, but slightly elongated. Note that the
potential barrier between neighboring lattice sites is about 1/2 smaller than without the additional AC
Stark laser. This will lead to higher tunneling rates compared to the case without the AC Stark laser.

6.B Global Rydberg laser excitation

In the following we show that it is possible to weakly admix the locally polarized Rydberg states
of Sect. 8.B to the electronic ground state |g〉 using a single laser with a wave vector k ∼ y and
polarization σ+ (see Fig. 6.4)

HL =
ΩR

2

[
|g〉y y〈n2P3/2, 3/2| + h.c.

]
. (6.25)

In the local x- and z- basis this laser will couple to all four m j-levels with different weights, i.e.

|32 〉y =
1

2
√

2

[
| 32 〉z + i

√
3|12 〉z −

√
3|−1

2 〉z − i|− 3
2 〉z

]
, (6.26)

|32 〉y =
1

2
√

2

[
e−3iπ/4|32 〉x +

√
3e−iπ/4| 12 〉x +

√
3eiπ/4|− 1

2 〉x + e3iπ/4|− 3
2 〉x

]
. (6.27)
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where we used the irreducible representation of a rotation in the j = 3/2 subspace, D[R(α, β, γ)] =

e−iαJze−iβJye−iγJz .

Since the states |m , 3/2〉z,x are energetically separated by at least EAC from the |m = 3/2〉 state
a laser with detuning ∆R � EAC and wave vector k ∼ y will selectively admix the states |3/2〉z and
|3/2〉x at lattice sites � and �, respectively, to the ground state |g〉 with an effective Rabi frequency
ΩR/(2

√
2).

6.C Van der Waals interactions

In this appendix we briefly summarize the technical details in order to calculate the angular dependent
van der Waals interactions of Sec. 6.3.2. Due to the odd parity of the electric dipole operators d(i)

µ

and d( j)
ν , the dipole-dipole interaction, Vdd, of Eq. (6.11) can only couple states with initial angular

(total) momentum ` ( j) to states with new angular (total) momentum ` ± 1 ( j or j± 1). Therefore, the
number of possible “channels” n` jm1 +n` jm2 −→ n′`′ j′m′+n′′`′′ j′′m′′ for which the matrix element
〈n` jm1; n` jm2|V (i j)

dd |n′`′ j′m′; n′′`′′ j′′m′′〉 is non-zero are limited. While there is no selection rule for
possible final principal quantum numbers n′ and n′′ which solely determine the overall strength of the
matrix element, the dipole-dipole matrix element is only non-zero if the magnetic quantum numbers
and the spherical component of the dipole operator fulfill m1 + µ = m′ and m2 + ν = m′′. If the
energy difference δαβ = E(α) + E(β) − 2E(n` j), between the initial states n` j and the intermediate
states α ≡ nα`α jαmα and β ≡ nβ`β jβmβ of the atoms is larger than the dipole-dipole matrix element
connecting those states the dominant interaction is of van der Waals type which arises from Vdd in
second order perturbation

V̂vdW = P̂12

∑
αβ

V̂ddQ̂α,βV̂dd

δαβ
P̂34. (6.28)

Here, V̂vdW is an operator acting in the degenerate manifold of magnetic sublevels with
P̂i j = |n` jmi, n` jm j〉〈n` jmi, n` jm j| a projector into the n` j-manifold and Q̂α,β = |α, β〉〈α, β| a projec-
tor on a specific state in the complementary space. The sum is over all two-atom energy levels, where
the indices α ≡ nα`α jαmα and β ≡ nβ`β jβmβ denote a full set of quantum numbers that specify the
states. Due to the electric dipole selection rules discussed above this sum can be split up into channels
denoted by ν = (`α, jα; `β, jβ). Eq. (8.8) can be written as V̂vdW =

∑
ν C(ν)

6 Dν(ϑ, ϕ)/r6, where C(ν)
6

contains the radial part of the matrix elements

C(ν)
6 =

∑
nα,nβ

Rα1Rβ2Rα3Rβ4
δαβ

(6.29)

which accounts for the overall strength of the interaction and is independent of the magnetic quantum
numbers. Here, R j

i =
∫

drr2ψni,`i, ji(r)∗r ψn j,` j, j j(r) is the radial integral calculated with radial wave
functions ψn j,` j, j j(r) obtained using the model potential from [106]. The matrix

Dν(ϑ, ϕ) = P̂12

∑
mα,mβ

MνQ̂α,βMν P̂34 (6.30)
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on the other hand is a matrix in the subspace of magnetic quantum numbers which contains the relative
angles between the two atoms (s = 1/2)

〈m1,m2|Mν|mα,mβ〉 =(−)s−m1

√∏
i=1,α

(2`i + 1)(2 ji + 1)
{
`1 `α 1
jα j1 s

} (
`α 1 `1
0 0 0

)

×(−)s−m2

√∏
i=2,β

(2`i + 1)(2 ji + 1)
{
`2 `β 1
jβ j2 s

} (
`β 1 `2
0 0 0

)

×
−

√
24π

5

∑
µ,ν

C1,1;2
µ,ν;µ+ν

(
jα 1 j1

mα µ −m1

) (
jβ 1 j2

mβ ν −m2

)
Yµ+ν

2 (ϑ, ϕ)∗
 .
(6.31)

As an example we show theD1 matrix for the first channel P3/2 + P3/2 −→ S 1/2 + S 1/2

D1 =



1
4 sin4 ϑ − 1

2
√

3
cosϑ sin3 ϑ sin2 ϑ

24
√

3
(3 cos 2ϑ + 1) 0

− 1
2
√

3
cosϑ sin3 ϑ 1

12

(
sin4 ϑ + sin2 2ϑ

)
− 1

9 cosϑ sinϑ sin2 ϑ

24
√

3
(3 cos 2ϑ + 1)

sin2 ϑ

24
√

3
(3 cos 2ϑ + 1) − 1

9 cosϑ sinϑ 1
864 (12 cos 2ϑ − 27 cos 4ϑ + 47) − sin 2ϑ

24
√

3
(3 cos 2ϑ + 1)

0 sin2 ϑ

24
√

3
(3 cos 2ϑ + 1) − sin 2ϑ

24
√

3
(3 cos 2ϑ + 1) 1

144 (3 cos 2ϑ + 1)2


(6.32)

in the subspace of states |32 , 3
2 〉, |32 , 1

2 〉, |32 ,− 1
2 〉 and | 32 ,−3

2 〉 where the first atom is fixed in the m = 3/2
state. In general one has to diagonalize the operator V̂vdW in the degenerate Zeeman subspace in
order to obtain the new eigenenergies and eigenstates in the presence of interactions. If an external
electric or magnetic field separates an initial two atom state |m1,m2〉 from all other Zeeman sublevel
such that the energy difference is larger than the vdW coupling matrix elements then it is possible to
simply take expectation values of V (n)

m1,m2(r) = 〈m1,m2|V̂vdW|m1,m2〉 in order to obtain the interaction
potential of two atoms initially in the |m1,m2〉 state.

6.D Mixed interactions

In the following we show how to calculate the mixed interactions, V��(r, ϑ), introduced in Sec. 6.3.2
between the locally polarized Rydberg states |�〉 ≡ |n2P3/2, 3/2〉z and |�〉 ≡ |n2P3/2, 3/2〉x. Here, the
indices z and x denote the local quantization axis of the state. In the following we work in the z-basis.
Rotating the latter state into the z basis using the irreducible representation D(3/2)[R(ŷ, π/2)]−1 of a
rotation around y by an angle of π/2 in the j = 3

2 space yields

|�〉 =
1

2
√

2

[
| 32 〉z −

√
3| 12 〉z +

√
3|− 1

2 〉z − |− 3
2 〉z

]
, (6.33)

where |m〉z ≡ |n2P3/2,m〉z. The state |�〉 = |n2P3/2, 3/2〉x =
∑

m cm|n2P3/2,m〉z is thus a superposition
of different m j-states in the z basis. Interactions between two atoms in a |��〉 or |��〉 state can be
calculated by evaluating the corresponding matrix elements of Eq. (8.8) which requires to compute
van der Waals interactions between atoms in different m j states, e.g.

〈��|VvdW| � �〉 =
∑
m,m′

cm′c∗m〈3
2 ,m|VvdW|32 ,m′〉. (6.34)



6.E. Finite-size clusters 121

0.5 1.0 1.5 2.0 2.5 3.0

20

40

60

80(a)

��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.1
0.2
0.4
0.6
0.8
0.9

22

24

26

28

30

(c)(b)

| |

Figure 6.16. (a) Angular part, A(n)
��(ϑ), of the van der Waals interaction, V (n)

��(r, ϑ) =

(n − δn` j)11A(n)
��(ϑ)/r6, between a pair of 87Rb atoms in the |r�〉 = |n2P3/2, 3/2〉z and |r�〉 =

|n2P3/2, 3/2〉x Rydberg states of 87Rb (solid lines). We plot the rescaled interaction energy,
A(n)
��(ϑ) as a function of the angle ϑ for various values of the principal quantum number n,

with δ the quantum defect. (b) Cartoon of the states and definition of the angle ϑ. (c) Contour
plot of the effective interaction Ṽ (n)

��(r, ϑ)/Ṽ0 between the dressed ground state atom |�〉 in the
middle and the NN |�〉 atoms (red arrows) the NNN |�〉 atoms (red dotted arrows).

The angular dependence of the van der Waals interaction between two Rydberg atoms in a |��〉 or in
a |��〉 state, V��(r, ϑ) = V��(r, ϑ − π/2) ∼ sin4 ϑ/r6 are the same up to a rotation by 90 degrees and
show the typical anisotropic behavior discussed in Sec. 6.3.2 [see solid lines in Fig. 6.5(a)] On the
other hand, the angular dependence of the mixed interactions between two Rydberg atoms in a |��〉
state, shown in Fig. 6.16(a), exhibits two asymmetric maxima at ϑ = ±π/4. The asymmetry arises
from off-diagonal matrix elements, e.g. 〈3

2 ,
1
2 |V̂vdW| 32 ,−1

2 〉 ∼ sin 2ϑ. Note that the actual strength of
the interaction only affects the Condon radius, rc [see Eq. (6.15)], but not the energy shift Ṽ0 or r → 0.
Panel (c) of Fig. 6.16 shows a contour plot of the mixed interaction,Ṽ��/Ṽ0 of Eq. (6.14), between
the dressed ground state atoms |�〉 in the middle and the surrounding |�〉 atoms. Interactions with
the neighboring |�〉 atoms (red solid arrows) are strong, ∼ Ṽ0, while interactions with next-nearest-
neighbor |�〉 atoms (red dotted arrows) are strongly suppressed due to the plateau structure of the
potential.

6.E Finite-size clusters

In our Exact Diagonalizations we have considered the following checkerboard clusters with periodic
boundary conditions:

N T1 T2 G1 G2 DS z=0
full Dspin-ice

16 (2, 2) (−2, 2) (π2 ,
π
2 ) (−π2 , π2 ) 12870 90

32 (4, 0) (0, 4) (π2 , 0) (0, π2 ) 601080390 2970
36 (3, 3) (−3, 3) (π3 ,

π
3 ) (−π3 , π3 ) 9075135300 6840

64 (4, 4) (−4, 4) (π4 ,
π
4 ) (−π4 , π4 ) 1832624140942590534 2891562

72 (6, 0) (0, 6) (π3 , 0) (0, π3 ) 442512540276836779204 16448400

where N is the number of lattice sites, T1,2 are the spanning vectors of the cluster, G1,2 are the
reciprocal vectors, DS z=0

full is the size of the full Hilbert space in the total magnetization S z = 0 sector,
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and Dspin-ice is the dimensionality of the spin ice manifold. Note that, in order to evaluate Ji j across
the periodic boundaries in a consistent manner 4, we keep the maximum amplitude among the set
{Ji, j+ε1T1+ε2T2 , ε1,2 =−1, 0, 1}, where T1 and T2 are the spanning vectors of the cluster.

6.F Classical Minimization

Table 6.2 summarizes the main results from the classical minimization procedure of Sec. 6.4.3 for the
finite clusters considered in our ED study but also for the thermodynamic limit (last line). The main
findings are as follows:

(i) Jc = 0.3, all clusters — Here the minimum sits at Q = (π, π), with v1(Q) = 1√
2
(1, 1) and λ1(Q) <

λ2(Q). The minimum energy is achieved by

σk,α =
√

2Nuc v1α(Q)δk,Q ⇒ σR,α =
√

2 v1α(Q)eiQ·R

where Nuc = N/2 stands for the number of unit cells, and the constants have been chosen to satisfy the
spin length constraint. The energy is given by E′/Nuc =λ1(Q).

(ii) Jc = 0.1, all clusters except N=36 — Here we have two optimal wavevectors Q1 = (0, π) and
Q2 = (π, 0) with λ1(Q1) = λ1(Q2) and v1(Q1) = (1, 0), v1(Q2) = (0, 1), and λ1(Q j)<λ2(Q j). Then the
solutions that satisfy the spin length constraint are

σR,1 = ±eiQ1·R, σR,2 = ±eiQ2·R

i.e., we have four ground states, with energy E′/Nuc =λ1(Q1).

(iii) Jc ≤ 0.01, all clusters except N=36 and 72 — Here the minima sit at ±Q = ±(−π2 , π2 ) with
eigenvectors v1(Q)= (1,∓i)/

√
2, and again λ1(Q)<λ2(Q). Let us try the ansatz:

σk,α =

√
Nuc√
2

(
v1α(Q)δk,Q + v∗1α(Q)δk,−Q

)
⇒ σR,α =

1√
2

[
v1α(Q)eiQ·R + v1α(−Q)e−iQ·R]

=
√

2 Re[v1α(Q)eiQ·R] =
(

cos(m − n)
π

2
, sin(m − n)

π

2

)
where we labeled R = nex + mey, and n, m are integers. This ansatz does not satisfy the spin length
constraint at all sites. Another ansatz is σR,α =

(
− sin(m − n)π2 , cos(m − n)π2

)
, which results from

the first ansatz by replacing v1(Q)→ iv1(Q). To get a solution that satisfies the spin constraint we

4It is not enough to choose the minimum distance as a criterion, since it may happen that the distance between i and j
and e.g. that between i and j + T1 is the same but the corresponding amplitudes are not the same.
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combine the two:

σk,α =

√
Nuc√
2

(
(ε1 + iε2)v1α(Q)δk,Q + (ε1 − iε2)v∗1α(Q)δk,−Q

)
⇒ σR,α =

1√
2

[
(ε1 + iε2)v1α(Q)eiQ·R + (ε1 − iε2)v1α(−Q)e−iQ·R]

=
√

2 Re[(ε1 + iε2)v1α(Q)eiQ·R]

=
(
ε1 cos(m − n)

π

2
− ε2 sin(m − n)

π

2
, ε1 sin(m − n)

π

2
+ ε2 cos(m − n)

π

2

)
where ε1,2 =±1, i.e. we have four possible solutions, all with energy E′/Nuc =λ1(Q).

All remaining cases— Here we cannot satisfy the spin length constraint. This is what happens e.g.
for N=36 and Jc ≤ 0.1, for N=72 and Jc ≤ 0.01, and for N = ∞ and Jc ≤ 0.01. In these cases, λ1(Q)
serves only as a lower bound of the energy (see comparison with ED data in Table 6.2). From these
results we can infer that the best choice for the cutoff is 0.001, and the best finite size cluster for the
investigation of the t = 0 ground states is the N=64 cluster, whose ground state energy per unit cell,
E′/Nuc =−2.108984, is very close to the one for N =∞ (E′/Nuc =−2.11938). The next good cluster
(again in terms of energy) is N=32 which has E′/Nuc =−2.056628.

6.G Technical details on classical Monte Carlo simulations

Low energy configurations are generated by thermal annealing consisting of a million sweeps per
site, using a combination of single-spin flip and long-loop updates. The former can annihilate all
types of defects (3up-1down, 3down-1up, 4up, and 4down) but suffers from very low acceptance
ratios at low temperatures, while the loop updates have much higher acceptance ratios (∼16%) and
can annihilate all defects except the 3up-1down (or 3down-1up). So combining both types of updates
gives sufficiently large acceptance ratios and can annihilate all defects.

6.H Energy scales and possible effects of dissipation

Here, we briefly comment on other possible imperfection of Rydberg experiments.

6.H.1 Energy scales and state preparation

The large energy scales provided by dressed Rydberg interactions allow to engineer RVB plaquette
solids with gaps of order of few hundred Hz. Those are one order of magnitude larger than typi-
cal exchange energy scales currently employed in bosonic cold atom experiment, allowing for the
investigation of ground state physics within current temperature regimes.

Beyond a direct cooling within the gauge invariant manifold protected by such energy scales, the
plaquette RVB solid can also be reached via an adiabatic ramp. A first possibility consists of starting
directly in the solid phase at J⊥ = 0, and switching on the tunnelling adiabatically (which corre-
sponds to lowering the optical lattice potential). The ramp has to be performed sufficiently slowly
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with respect to the energy gap in Fig. 6.8 in order to limit the number of proliferating defects. Alter-
natively, adiabatic engineering of small RVB samples has already been experimentally demonstrated
in coupled double-well systems [107]: starting from such a state, one could melt the different RVB
cells following a similar procedure as in Ref. [108], that is, merging the different cells by using an
additional pair of superlattice potentials in the x − y plane. A possible drawback is represented by
spontaneous emission described in Sec. 6.3 which, despite being strongly suppressed by the dress-
ing technique, might still play a detrimental role in establishing the correct ground state physics. A
straightforward way to further minimise the effects of losses would be to address Rydberg p-states
with higher principal quantum number n, as interactions (∼ n11) and decay times (∼ n3) both scale
favourably as a function of the principal quantum number. We comment below on the expected influ-
ence of gauge variant dissipative dynamics.

For, e.g., n = 32, the diagonal interaction between both atoms in the m j = 3/2 state is V 3
2

3
2
(a) =

2π · 150.53 MHz while the largest off-diagonal matrix element is Voff(a) = 2π · 65.40 MHz. Using an
AC-Stark laser with P = 10 mW one obtains a Rabi frequency of ΩAC = 2π·325 MHz � Voff(a) on the
32P3/2 − 7D3/2 transition. The same laser creates an AC-Stark effect on the ground state 5S of VAC =

2π ·279.5 kHz, which has to be smaller than the actually lattice trapping the atoms, Vtrap. The optimal
dressed potentials (with respect to NNN imperfections) is obtained with a detuning ∆r = 2π·2475 kHz
(which sets the Condon radius of the step-like interaction) of the Rydberg laser coupling 5S − 32P.
The decay rate of 32P is Γ = 2π · 2.4 kHz. With a Rabi frequency of Ωr = 2π · (500, 625, 750) kHz
one obtained ε = Ω/2∆ = (0.10, 0.13, 0.15). The effective decay rate is ε2Γ = 2π · (24, 38, 55) Hz
and the soft-core potential is Ṽ0 = ε3Ω = 2π · (515, 1258, 2610) Hz. While in this specific case,
direct tunneling will be suppressed due to deep lattice potential, one could nevertheless demonstrate
experimentally the classical order-by-disorder mechanism discussed in Sec. 6.5, or exploit internal
spin-exchange within the Rydberg manifold 5.

6.H.2 Effects of spontaneous emission

The influence of dissipative dynamics which explicitly violates Gauss constraints has been numeri-
cally investigated in Ref. [109] for a series of both Abelian and non-Abelian discrete gauge theories
in one dimension. In particular, when the energy scales of dissipative and coherent dynamics are well
separate, the influence of dissipative effects is quantitatively negligible as long as low-order observ-
ables, such as, e.g., correlation functions, are considered (as is the case here). Due to the stability
of the plaquette order (protected by a large energy gap) with respect to Hamiltonian imperfection,
we expect a similar stability in the gauge theory studied here. A detailed numerical study on the
specific model could shed further light on the effects of spontaneous emission, furthering the under-
standing on how the low-energy physics affects the open system dynamics (along the lines discussed
in Ref. [110]).
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[37] D. Barredo, S. Ravets, H. Labuhn, L. Béguin, A. Vernier, F. Nogrette, T. Lahaye, and
A. Browaeys, arXiv.org (2014), 1402.4077v1 .
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[49] R. Löw, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher, H. P. Büchler, and T. Pfau, Journal
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Table 6.2. Results for the classical ground state at t = 0 from the classical minimiza-
tion method of Sec. 6.4.3, and Exact Diagonalizations (ED). Here Nints is the total
number of interaction terms (of the type S z

i S
z
j) in the Hamiltonian, Q is the minimum

of λ1(k) over the BZ, v1(Q) and λ1(Q) are the corresponding eigenvector (dashes indi-
cate when the eigenvectors v1(Q) cannot satisfy the spin length constraint) and eigen-
value, respectively. The last line for each given N gives the corresponding ground state
energies per unit cell (multiplied by a factor of 4 to account for the unit spin length) as
found by ED. Bold numbers indicate the cases with Nints(N)<Nints(∞) (for the given
cutoff Jc) due to the finite size, showing that it is not safe to decrease the cutoff further.

N cutoff=0.3 0.1 0.01 0.001

16 Nints/N 3 5 6.5 7.5
Q (π, π) (0, π), (π, 0) ±(−π/2, π/2) ±(−π/2, π/2)

v1(Q) (1, 1)/
√

2 (1, 0), (0, 1) (1,∓i)/
√

2 (1,∓i)/
√

2

λ1(Q) -2.211504 -1.97784 -2.011411 -1.995727

ED -2.21150 -1.97784 -2.011411 -1.995727

32 Nints/N 3 7 10.5 15.5
Q (π, π) (0, π), (π, 0) ±(−π/2, π/2) ±(−π/2, π/2)

v1(Q) (1, 1)/
√

2 (1, 0), (0, 1) (1,∓i)/
√

2 (1,∓i)/
√

2

λ1(Q) -2.211504 -2.271598 -2.089309 -2.056628

ED -2.21150 -2.271598 -2.089309 -2.056628

36 Nints 3 7 11.5 16.5
Q (π, π) ±(−π, π/3) ±(π/3,−π/3) ±(π/3,−π/3)

v1(Q) (1, 1)/
√

2 — — —

λ1(Q) -2.211504 -2.03528 -1.95403 -1.94119

ED -2.21150 -1.8845151 -1.8803936 -1.8731703

64 Nints/N 3 7 12 25.5
Q (π, π) (0, π), (π, 0) ±(−π/2, π/2) ±(−π/2, π/2)

v1(Q) (1, 1)/
√

2 (1, 0), (0, 1) (1,∓i)/
√

2 (1,∓i)/
√

2

λ1(Q) -2.211504 -2.271598 -2.166198 -2.108984

ED -2.21150 -2.271598 2.166198 -2.108984

72 Nints/N 3 7 12 27.5
Q (π, π) (0, π), (π, 0) ±(2π/3,−π/3) ±(2π/3,−π/3)

v1(Q) (1, 1)/
√

2 (1, 0), (0, 1) — —

λ1(Q) -2.211504 -2.271598 -2.075198 -2.03849

ED -2.21150 -2.271598 -2.04433866 -2.0137376

∞ Nints/N 3 7 12 31

Q (π, π) (0, π), (π, 0) ±0.473296(−π, π) ±0.4573374(−π, π)

v1(Q) (1, 1)/
√

2 (1, 0), (0, 1) — —

λ1(Q) -2.21150 -2.27159 -2.17273 -2.11938

λ1(−π2 ,
π
2 ) -1.93452 -1.93452 -2.16620 -2.10609
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We describe the dynamical preparation of anisotropic crystalline phases obtained by laser-
exciting ultracold Alkali atoms to Rydberg p-states where they interact via anisotropic van der
Waals interactions. We develop a time-dependent variational mean field ansatz to model large, but
finite two-dimensional systems in experimentally accessible parameter regimes, and we present
numerical simulations to illustrate the dynamical formation of anisotropic Rydberg crystals.

7.1 Introduction

Highly excited Rydberg states of atoms have unique properties. This includes the size of the Rydberg
orbitals scaling as n2, the polarizabilities as n7 and a long lifetime as n3 with n the principal quantum
number. These properties are also manifest in interactions between Rydberg states, e.g. in van der
Waals (vdW) interactions ∝ n11/r6, which can be controlled and tuned via external fields. Exciting
ground state atoms with a laser to Rydberg states thus provides a means to study many body systems
with strong, long-range interactions [1, 2]. With the atomic ground state and the Rydberg state defin-
ing an effective spin-1/2, we can describe the many body dynamics in terms of a model of interacting
spins [3–5], reflecting the competition between the laser excitation and vdW interactions, at least in
the short time limit where the motion of the atoms can be neglected (the so-called frozen gas regime).

The study of quantum phases of a laser excited Rydberg gas of alkali atoms, including its dy-
namical preparation, has so far focused on isotropic vdW interactions, corresponding to Rydberg

†The author of the present thesis contributed to the full quantum treatment of the problem in terms of the derivation of
the coupled Liouville-equations and did the molecular dynamics simulations of the collisional process.
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s-states excited in a two-photon process. This includes theoretical studies [6–11] and experimental
observations [12, 13] of Rydberg crystals due to the Rydberg blockade mechanism [14–20], and their
melting with increasing laser intensity to a quantum-disordered phase [21, 22]. The steady state of
the system has also been studied in presence of dissipation [23–26]. With the availability of UV laser
sources also Rydberg p-states can be excited in a single photon transition, leading to anisotropic vdW
interactions [27, 28]. The goal of this paper is to investigate the quantum phases and their dynami-
cal preparation with a laser pulse protocol for these anisotropic interactions. We are interested in 2D
systems with a relatively high density of excitations involving a larger number of atoms, and in partic-
ular in the dynamical formation of anisotropic Rydberg crystals. Our studies are performed within a
time-dependent variational mean field ansatz, beyond what can be accessed by exact diagonalization
techniques.

7.2 Model and Method

7.2.1 Laser excited interacting Rydberg atoms as an anisotropic spin model

We are interested in the quantum dynamics and the quantum phases of a gas of laser excited Ryd-
berg atoms, interacting via anisotropic vdW interactions. The setup we have in mind is represented
in Fig. 7.1. We assume that the atoms are trapped in a 2D square lattice with exactly one atom per
lattice site, as obtained in a Mott insulator phase. The atoms are initially prepared in the ground state,
denoted by |↓〉, and coherently excited by a laser to a Rydberg state |↑〉 with Rabi frequency Ω and
laser detuning ∆ [see Fig. 7.1(a)]. Two atoms i and k both excited to the Rydberg state |↑〉 and located
at positions ri and rk, respectively, interact via vdW interactions V(ri − rk) = C6(θi,k)/|ri − rk|6. These
vdW interactions exceed typical ground state interactions of cold atoms by several orders of magni-
tude. We are interested in a situation where the vdW interaction has a non-trivial angular dependence
C6(θi,k). Such an angular dependence arises, for example, in laser excitation to higher angular mo-
mentum states, e.g. to Rydberg p-states, as opposed to excitation of s-states where the interactions are
isotropic [27]. In the remainder of this paper we will illustrate the anisotropic interactions by explic-
itly considering the stretched state |n2P3/2,m j = 3/2〉 of Rubidium for which the C6(θi,k) is dominated
by a term proportional to sin4 θi,k [28]. Interactions are therefore much stronger along the x direction
compared to the z direction [see Fig. 7.1(b)]. The atomic physics underlying this interaction will be
discussed in detail in Sec. 7.3 below.

In its simplest form the dynamics of the driven Rydberg gas can be described by an interacting
system of pseudospin-1/2 particles

H =
~

2

N∑
i=1

(
Ωσ(i)

x − ∆σ(i)
z

)
+

1
2

N∑
i=1

N∑
k=1,k,i

C6(θi,k)PiPk

| ri − rk |6
(7.1)

where σ(i)
x =|↑〉i〈↓| + |↓〉i〈↑| and σ(i)

z =|↑〉i〈↑| − |↓〉i〈↓| correspond to the local Pauli matrices and
Pi =|↑〉i〈↑| is the projection operator on the Rydberg level. We note that in this model atoms are
assumed to be pinned to the lattice sites, which is referred to as the frozen gas approximation [2].
For isotropic interactions spin models of this type have been discussed in previous theoretical work
[6–11], and have been the basis for interpreting experiments [12, 13].
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Figure 7.1. (a) Setup: The ground state atoms |↓〉 are placed in a square optical lattice
and are excited to a Rydberg state |↑〉 via a homogeneous laser beam with Rabi frequency
Ω and detuning ∆. The vdW interaction V between two Rydberg atoms i and k is a function
of their relative distance |ri − rk | but also of the angle θi,k between their relative vector and
the magnetic field B which is set along the z direction of the lattice. The details of these
interactions in the fine structure manifold n2P3/2, in the presence of the magnetic field are
discussed in Sec. 7.3. (b) Example of angular dependence of the C6 coefficient obtained for a
Rydberg state of Rubidium |25P3/2,m j = 3/2〉. (c) Example of sweep path: initially the atoms
are prepared in the ground state |↓〉 with a negative detuning ∆(t0) < 0. The Rabi frequency
Ω and the laser detuning ∆ are then slowly varied to reach the final state of the preparation at
time t f .

The modeling of the laser excited Rydberg gas as a coherent spin dynamics governed by the
Hamiltonian Eq. (7.1) is valid for sufficiently short times. First, as we noted above, the model Eq. (7.1)
ignores the motion of the atoms: laser excited Rydberg atoms are typically not trapped by the optical
lattice for the ground state atoms, and there will be (large) mechanical forces associated with the vdW
interactions. In addition, Rydberg states have a finite life time, scaling as τ ∼ n3 (τ ∼ n5) for low
(high) angular momentum states with n the principal quantum number, and black body radiation can
drive transitions between different Rydberg states, further decreasing the lifetime by approximately
a factor of two [29]. The regime of validity has been analyzed in detail in [30]: there the long time
dynamics of laser excited Rydberg gas including motion and dissipation was treated, including the
validity of the frozen gas approximation and the cross over regime.

We emphasize that the various quantum phases predicted by the spin model Eq. (7.1) as a function
of the laser parameters and interactions, and their preparation in an experiment, can only be under-
stood in a dynamical way. In an experiment all atoms are initially prepared in their atomic ground
state, |Φ(t0)〉 = |G〉 ≡|↓〉1 . . . |↓〉N , which is the ground state of the many-body Hamiltonian Eq. (7.1)
for Ω = 0 and ∆ < 0. Preparation of the ground state of the spin Hamiltonian Eq. (7.1) for a given
Ω and ∆ can thus be understood in the sense of adiabatic state preparation, where starting from an
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initial time t0 with laser parameters Ω(t0) = 0 and ∆(t0) < 0 we follow the evolution of the many body
state for a parameter trajectory to the final time t f with Ω(t f ) = Ω and ∆(t f ) = ∆, see Fig. 7.1(c).
This dynamical preparation of many-body states and quantum phases of the spin-model Eq. (7.1) in
a time-dependent mean field ansatz, in particular in the anisotropic case, will be a central question to
be addressed below.

While our focus below will be on the anisotropic model, we find it worthwhile to summarize the
basic properties and signatures of the quantum phases (ground states) of the spin model Eq. (7.1) for
isotropic interactions. Even for this case, the ground-state phase diagram of the Hamiltonian Eq. (7.1)
is rather complicated. In the so-called classical limit, Ω → 0, where all terms in the Hamiltonian
Eq. (7.1) commute, the ground-state corresponds to the minimum energy configuration of classical
charges on a square lattice interacting via a 1/r6 potential, and ∆ serves as a chemical potential
[31]. As noted above, for ∆ < 0 this corresponds to the state |G〉 with all atoms in the ground state.
For ∆ > 0 a finite density of excited Rydberg atoms is energetically favorable and the competition
between the laser detuning and the vdW interactions results in a complex crystalline arrangement with
a typical distance between excited atoms set by the length scale ` ≡ [C6/(~∆)]1/6. In two dimensions
the Rydberg atoms ideally want to form a triangular lattice to maximize their distance, which will
compete with the square optical lattice for the setup of Fig. 7.1. An exact solution of this classical
commensurability problem is not known except in one dimension, where all possible commensurate
crystalline phases form a complete devil’s staircase [32]. In analogy to the 1D case we expect a
plethora of different crystalline phases in two dimensions, which are stable over some part of the
phase diagram and which break the lattice symmetries in different ways [31, 33, 34].

Away from the classical limit, Ω , 0, the crystalline states of Rydberg atoms are expected to
be stable for sufficiently small Ω. By increasing Ω quantum fluctuations will eventually melt the
crystalline phases and we reach a quantum disordered phase. The nature of the corresponding quan-
tum phase-transition has been studied in one dimension [21, 22] and remains an open issue in higher
dimensions.

Concerning anisotropic interactions, it is natural to expect that the angular dependence of the vdW
coefficient, C6(θi,k), is responsible for the presence of an anisotropic crystalline phase at small Ω. In
summary, our goal below is to describe the dynamical formation of such crystals in large but finite
systems similar to realistic experimental situations, where finite size effects still play an important
role, and to compare the final state to the ground state of the system in order to assess the fidelity
of the dynamical preparation. To this end, we developed an approach based on a time-dependent
variational principle which proved very useful to describe the crystalline states for isotropic as well
as anisotropic interactions with a large number of excitations, i.e. in a parameter regime where an
exact solution cannot be applied.

7.2.2 Time dependent variational ansatz for many-body systems

In the following we present our variational ansatz and the corresponding equations of motion which
we use to describe the dynamical preparation of Rydberg crystals governed by Eq. (7.1). The simplest
variational ansatz which is able to describe crystalline states of Rydberg atoms takes the most general
product state form

|Φ(t)〉 =

N⊗
i=1

[
αi(t) |↓〉i + βi(t) |↑〉i] , (7.2)
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where N denotes the number of atoms and the coefficients αi and βi obey the normalization condition
|αi|2 + |βi|2 = 1. Crystalline phases correspond to states where the probability |βi|2 to find an atom
in the Rydberg state at lattice site i is spatially modulated and its Fourier components serve as an
infinite set of order parameters. In contrast, in the quantum disordered phase the Rydberg density is
homogeneous and |βi|2 is equal on all lattice sites i.

Equilibrium properties of the variational ansatz

Before deriving equations of motion for the time dependent variational parameters αi(t) and βi(t) we
discuss equilibrium properties of our variational ansatz. Note that the ansatz Eq. (7.2) captures the
exact ground- and excited states of our model Hamiltonian [equation Eq. (7.1)] in the classical limit
Ω → 0, where all eigenstates are product states. In the general case Ω > 0, it is an approximation
and its validity will be discussed at the end of this subsection. In principle we find the variational
ground-state by minimizing the expectation value of the Hamiltonian with respect to the variational
parameters αi and βi. In the ground-state these parameters can be chosen to be real and the variational
ground-state energy, E = 〈Φ|H|Φ〉, can be expressed as function of the probabilities pi = |βi|2 as

E(pi) = −~Ω
∑

i

√
pi(1 − pi) − ~∆

∑
i

(pi − 1
2

)

+
1
2

∑
k,i

V(ri − rk)pi pk (7.3)

with V(ri − rk) = C6(θi,k)/|ri − rk|6. Finding all solutions of the corresponding mean-field equations
∂E(pi)/∂pi = 0 in the thermodynamic limit is an impossible task, however. For this reason we do
not attempt to make predictions about the phase diagram of Eq. (7.1) in the thermodynamic limit and
rather focus on experimentally relevant systems with a finite but large number of atoms instead.

There is one notable exception, however: we can make a statement about the melting transi-
tion between the quantum disordered phase at large Ω and the adjacent crystalline phase within our
variational (mean-field) approach. In the thermodynamic limit, the quantum disordered phase has a
homogeneous Rydberg density fR := pi ≡ p and we can determine at which point the homogeneous
solution becomes unstable to density modulations. Linearizing the mean-field equations in small
perturbations around the homogeneous solution we find the condition

1 +
~2Ω2[

(V0 fR − ~∆)2 + ~2Ω2)
]3/2 min

k
(Vk) = 0 , (7.4)

where Vk =
∑

i eik·RiV(Ri) are Fourier components of the interaction potential (note that the density fR
of Rydberg excitations depends on Ω and ∆). We note that an expansion in small density modulations
around the homogeneous solution implicitly assumes that the melting transition is continuous. It is
possible that this transition could be first order, however. In order to rule out a discontinuous melting
transition we minimized the variational energy Eq. (7.3) numerically on a lattice with N = 441 sites
and found that the melting transition is indeed continuous.

The momentum k0 at which the interaction potential Vk is minimal determines the wave-vector
at which density modulations form in the crystalline phase. In the isotropic case this minimum is at
k0 = (kx

0, k
z
0) = (π/a, π/a), where a is the lattice constant of the optical lattice. If one approaches
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the crystalline phase from the quantum disordered phase, the leading instability is thus always to-
wards a crystalline state with Neel-type order, which breaks a Z2 lattice symmetry. Only at smaller
Ω more complicated crystalline states appear, which are most likely separated by first order phase
transitions. Consequently, within our variational approach the quantum phase transition between the
disordered and the crystalline phase is always in the Ising universality class for isotropic interactions,
independent of Ω and ∆.

For an anisotropic interaction potential with angular dependence C6(θi,k), present for example
between |↑〉 = |n2P3/2,m j = 3/2〉 states of Rubidium as discussed in Sec. 7.3, the minimum is at a
wave-vector k0 = (π/a, 0). Again, if we approach the crystalline phase from the quantum-disordered
regime, crystalline order will form only in x-direction with a period of two lattice spacings, whereas
no crystalline order is present in z-direction. This transition is again continuous. The system thus
decouples into an array of quasi one dimensional Rydberg gases. Upon further decreasing Ω, we
expect a transition to a state with incommensurate, floating crystalline order in z-direction, in analogy
to one-dimensional systems [21, 22]. The system remains long-range ordered in x-direction, however,
and finally settles into a commensurate, genuinely two-dimensional crystalline state at sufficiently
small Ω. We leave a detailed investigation of this two-step directional melting transition open for
future study.

The phase boundary obtained from Eq. (7.4) is shown in Fig. 7.2 for both isotropic as well as
anisotropic interactions with the angular dependence represented in Fig. 7.1(b). As in the anisotropic
case the interactions are much stronger in the x direction compared to the z-direction, the corre-
sponding phase-boundary significantly differs from the isotropic curve and is very close to the one
obtained for a one-dimensional system. Note that the mean-field phase boundary has an unphysical
re-entrance behavior at negative detunings. This is because our variational ansatz vastly overesti-
mates the ground-state energy in the quantum disordered phase at finite Ω, where pair-correlations
are important.

Indeed, our product ansatz of Eq. (7.2) does not describe correlations between local density fluc-
tuations of Rydberg atoms

〈δPiδPk〉 = 〈PiPk〉 − 〈Pi〉〈Pk〉 , (7.5)

and thus 〈δPiδPk〉Φ ≡ 0 for our variational wave-function. Deep in the crystalline phase these corre-
lations are weak and decay exponentially with distance, however. We can give an upper bound on the
strength of such density density correlations and consequently make a statement about the validity of
our ansatz by estimating the strength of local density fluctuations

〈δPi
2〉 = 〈Pi〉(1 − 〈Pi〉) . (7.6)

Accordingly, density-density correlations are negligible deep in the crystal, where 〈Pi〉 is either close
to zero or one. As a consequence we expect our ansatz to be valid also at finite Ω as long as we are
deep in the crystalline phase. At sufficiently large Ω, where the system enters the quantum disordered
phase and quantum correlations become predominant, our ansatz is not a good approximation for the
exact ground-state wave function.

Time-dependent variational ansatz and Euler-Lagrange equations

One of the main goals of our paper is to describe the dynamical formation of crystalline states of
Rydberg excitations in a large but finite system during a slow change of the laser parameters. For this
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Figure 7.2. Mean-field phase boundary between the quantum-disordered and crystalline
phase(s) obtained from Eq. (7.4). The blue solid line represents the case of anisotropic interac-
tions with the angular dependence C6(θ) of Rubidium |nP3/2,m j = 3/2〉 atoms [see Fig. 7.1(c)].
The red dashed line shows the phase boundary for isotropic interactions. For comparison, the
black dotted line represents the mean-field phase boundary of a one-dimensional system.

reason we incorporate our ansatz into a time-dependent variational approach, where the formation of
Rydberg excitations is described by the time evolution of the variational coefficients αi(t) and βi(t)
and governed by the Hamiltonian Eq. (7.1). Considering an initial condition where all atoms are in the
ground state |G〉, i.e. αi(t0) = 1 (∀i ∈ {1, . . . ,N}) and Ω(t0) = 0, ∆(t0) < 0, we use the time-dependent
variational principle (TDVP) [35] to derive the equations of motion for the variational coefficients
during a slow change of Ω and ∆ as in typical dynamical state preparation schemes [8, 9, 13]. The
TDVP states that the time-evolution of the variational coefficients satisfy the least action principle
which means that they can be derived using the Euler-Lagrange equations:

d
dt

(
∂L
∂α̇∗i

)
=

∂L
∂α∗i

d
dt

 ∂L
∂β̇∗i

 =
∂L
∂β∗i

where L is the Lagrangian

L =
i~
2
〈Φ|dtΦ〉 − i~

2
〈dtΦ|Φ〉 − 〈Φ|H|Φ〉.

leading to a set of 2N non-linear coupled equations

i~α̇i =
~Ω

2
βi +
~∆

2
αi

i~β̇i =
~Ω

2
αi − ~∆2 βi +

∑
k,i

C6(θi,k)
|ri − rk|6

|βk|2βi. (7.7)

We note that these equations conserve the norm of the wavefunction for all times, i.e. |αi(t)|2+|βi(t)|2 =

1. If Ω and ∆ do not evolve in time, the expectation value of the energy E = 〈Φ|H|Φ〉 is also a
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conserved quantity. However, this is not the case for a dynamical state preparation and the final
energy depends crucially on the parameter trajectory.

In a perfectly adiabatic situation we would obtain the variational ground-state for Ω(t f ) and ∆(t f )
at the end of the time evolution. Since our sweep protocols are limited to timescales smaller than the
lifetime of the Rydberg state, the preparation will not be perfectly adiabatic and we discuss deviations
from adiabaticity in subSec. 7.4.1. We note that given the phase diagram shown in Fig. 7.2 and
the typical parameter sweep we consider [Fig. 7.1(b)], the system has to undergo a quantum phase
transition from the quantum disordered phase to the crystalline phase at some point in the preparation
which may reduce the adiabaticity of the preparation significantly. In the finite systems that we
consider in the rest of this work, a finite-size gap is always present which reduces this problem,
however.

Finally, we note that our ansatz Eq. (7.2) is particularly suited to study the experimentally relevant
situation where the Rydberg laser is switched off at the end of the parameter sweep Ω(t f ) = 0, because
it captures the exact ground- and excited states of the Hamiltonian Eq. (7.1) in the classical limit
Ω = 0, as discussed above. In subSec. 7.4.1 we also estimate the typical Rabi frequency Ω at which
our ansatz fails by comparing our approach to the exact solution of the Schrdinger equation.

In the next section, we explain in detail the implementation of the model Hamiltonian Eq. (7.1)
with Rydberg atoms excited to |↑〉 = |n2P3/2,m j = 3/2〉 Rydberg states in order to provide realistic
parameters for our numerical Sec. 7.4.

7.3 Anisotropic interactions for Rydberg atoms in p-states

In the following we discuss the derivation of our model Hamiltonian [equation Eq. (7.1)] from a
microscopic Hamiltonian,

Hmic =

N∑
i=1

[
H(i)

A + H(i)
L

]
+

1
2

N∑
i=1

N∑
k=1,k,i

H(i,k)
V . (7.8)

describing vdW interactions between N alkali atoms laser excited to the |↑〉 ≡ |nP3/2,m j = 3/2〉 Ry-
dberg state. We first focus on the Rydberg manifold and their interactions and then discuss the laser
excitations. The first term of Eq. (7.8),

H(i)
A =

∑
m j

[
~ωnP3/2 + µBg jBzm j

]
|m j〉〈m j|, (7.9)

accounts for the energies of the Zeeman sublevels |m j〉 ≡ |nP3/2,m j〉 with m j ∈ {−3/2, . . . , 3/2} as
illustrated in Fig. 7.1. Here, ~ωnP3/2 is the energy difference between the atomic ground state, 5S 1/2,
and the nP3/2 Rydberg manifold in the absence of external fields. The second term of H(i)

A describes
the lifting of the energy degeneracy of the nP3/2 Rydberg manifold due to a magnetic field B = Bez

(see Fig. 7.1), with µB/h = 1.4 MHz/G the Bohr magneton and g j the Lande factor for j = 3/2. Note,
that the quantization axis of the corresponding eigenstates is given by the direction of the magnetic
field, B, and is aligned in plane along the z-axis, see Fig. 7.1. In order to neglect higher order shifts
and to prevent mixing between different fine-structure manifolds the energy shifts ∆Em j = µBg jBzm j

have to be much smaller than the fine-structure splitting EnP3/2 − EnP1/2 of the Rydberg manifolds.
Typically, the fine structure splitting is of the order of tens of GHz, e.g. 7.9 GHz for n = 25.
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Away from Foerster resonances two laser excited Rydberg atoms dominantly interact via van der
Waals interactions [1, 2]. In general, these van der Waals interactions, V̂vdW, will mix different Zee-
man sublevels |m j〉 in the nP3/2 manifold [36]. Let us denote by P̂ =

∑
i, j |mi,m j〉〈mi,m j| a projection

operator into the nP3/2 manifold, then the dipole-dipole interactions V̂dd will couple to intermediate
states, Q̂α,β = |α, β〉〈α, β|, which have an energy difference δαβ. In second order perturbation this gives
rise to

V̂vdW = P̂
∑
αβ

V̂ddQ̂α,βV̂dd

δαβ
P̂, (7.10)

where V̂vdW is understood as an operator acting in the manifold of Zeeman sublevels We note, that in
the absence of an external magnetic field, B→ 0, the new eigenenergies obtained from diagonalizing
V̂vdW are isotropic.

Anisotropic van der Waals interactions can be obtained by lifting the degeneracy between the
Zeeman sublevels e.g. with a magnetic field. For distances large enough, such that the off-diagonal
vdW coupling matrix elements of Eq. (8.8) are much smaller than the energy splitting between the
Zeeman sublevels, it is possible to simply consider interactions between |nP3/2,m j = 3/2〉 states and
neglect transitions to different m j levels. Typically, for Rydberg p-states the off-diagonal vdW matrix
elements are of the same order as the diagonal interaction matrix elements. Pairwise interactions
between two atoms excited to the |↑〉 = |nP3/3,m j = 3/2〉 state are then described by the Hamiltonian

H(i,k)
V = V(ri − rk) |↑〉i〈↑| ⊗ |↑〉k〈↑|, (7.11)

where V(ri−rk) = 〈 3
2 ,

3
2 |V̂vdW| 32 , 3

2 〉 = C6(θi,k)/|ri−rk|6 the van der Waals interaction potential, giving
rise to the second term of Eq. (7.1). Here, θi,k = ^(B, ri − rk) is the angle between the relative vector
and the quantization axis given by the magnetic field direction B (see Fig. 7.1).

The second term of Eq. (7.8), H(i)
L , accounts for the laser excitation of Rubidium 87Rb atoms

prepared in their electronic ground state, which we choose as |↓〉 = |52S 1/2, F = 2,mF = 2〉, to the
|↑〉 = |nP3/2,m j = 3/2〉 Rydberg states. This can be done using a single-photon transition with Rabi
frequency Ω, scaling as Ω ∼ n−3/2. Using a UV laser source it is possible to obtain Rabi frequencies
of several MHz in order to excite Rydberg states around n ∼ 30. The single particle Hamiltonian
governing the laser excitation of atom i is

H(i)
L (t) =

~Ω

2

(
|↑〉i〈↓| ei(kL·ri−ωLt)+ |↓〉i〈↑| e−i(kL·ri−ωLt)

)
, (7.12)

where ωL = ωnP3/2 + ∆E3/2/~ + ∆ is the laser frequency detuned by ∆ from the atomic transition
(including the magnetic field splitting) and kL is the wave vector of the laser. Unwanted couplings to
Zeeman levels with m j , 3/2 due to the laser can be prevented by using a detuning |∆| � |∆E3/2 −
∆E1/2| or by using circular polarized light propagating along the quantization axis, i.e. kL ∼ ẑ, which
couples |↓〉 only to the m j = 3/2 state. In a frame rotating with the laser frequency and after absorbing
the position dependent phase into |↑〉i → e−ikL·ri |↑〉i one obtains the first term of Eq. (7.1).

As an example, we consider the n = 25 Rydberg state, i.e. |↑〉 ≡ |25P3/2,m j = 3
2 〉. For the corre-

sponding diagonal van der Waals matrix element we obtain using the model potential from [37]

C6(θ) =
(
6.33 sin4 θ − 0.267 sin2 θ + 0.269

)
h MHz µm6. (7.13)
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Figure 7.3. Number of excitations ne of the final state of the preparation as a function of
the number N of atoms obtained after a sweep time of 32 µs with Ω(t f ) = 0, ∆(t f )/(2π) = 0.7
MHz and a Rydberg state |43S 1/2,m j = 1

2 〉. Blue circles represent our variational approach,
red crosses the exact solution obtained by the Schrdinger equation and the same sweep. Inset:
Laser parameters Ω/(2π) and ∆/(2π) as a function of time t used for the dynamical state
preparation.

Thus, C6(π/2) = 6.35 h MHz µm6 and C6(0) = 0.269 h MHz µm6. The dominant ∼ sin4 θ term arises
from dipole-dipole transitions to nS 1/2 states, while residual interactions at θ = 0 and deviations from
the ∼ sin4 θ shape originate from couplings to D-channels as discussed in [27]. The lifetime of the
Rydberg state is τ ≈ 29 µs [29].

We finally note that it is also possible to switch from the anisotropic configuration defined above
to an isotropic configuration where the angle θ is fixed to a constant value π

2 . In this configuration,
the magnetic field is rotated from the z to the y-direction (see Fig. 7.1) and the Rydberg state which
is excited by the laser |↑〉 is in this case |n2P3/2,m j = 3

2 〉y.

7.4 Numerical results

In the following we present our numerical results obtained by propagating the equations of motion
Eq. (7.7) along different parameter trajectories (Ω(t),∆(t)) in order to describe the dynamical state
preparation of Rydberg crystalline phases. To this end we first estimate the domain of validity of
our approach based on the TDVP comparing in the case of small systems our results to the exact
diagonalization (ED) solution which is obtained from the Schrdinger equation. We then present the
results of our approach for large systems (N > 500) with large densities of Rydberg excitations where
ED techniques cannot be applied.

7.4.1 Validity of the variational approach for small systems

It is instructive to start by considering small systems where an exact numerical solution is available
which allows us to estimate the validity of our approach. The first situation we have in mind is
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Figure 7.4. The three different parameter sweep paths (a), (b), (c), corresponding to the final
Rabi frequencies Ω(t f )/2π = 0, 1 and 4 MHz. The left plot shows the three paths in parameter
space, whereas the right plots show how the parameters evolve as a function of time. Initially,
all atoms are in the ground state with Ω(t0) = 0 and ∆(t0)/(2π) = −1 MHz.

the classical limit (Ω = 0) of the model Eq. (7.1) for a one-dimensional system where the number
of excitations takes the form of the stair case as a function of the number of atoms N [32]. As its
existence was recently demonstrated experimentally [13] we consider as a first illustration of our
approach the same parameters as in [13] with the notable exception that we choose a larger sweep
time t f = 32 µs instead of t f = 4 µs in order to describe the dynamical preparation of states which are
as close as possible to the ground state of the system. We now test our approach by comparing the
exact number of excitations ne for theses parameters, obtained after a truncation of the Hilbert space
[8] , to the one corresponding to our variational ansatz. The result is shown in Fig. 7.3 as a function
of the number of atoms N where the laser sweep is represented in the inset. Our approach describes
very well the excitation stair case and apart from some defects (for example for N = 8) compares very
well with the exact solution (red crosses). We finally emphasize that as the sweep time is increased,
our solution converges towards the exact classical ground state, as expected.

Our approach describes the key feature of the one-dimensional system but as it relies on a mean-
field approximation of the many-body Hamiltonian Eq. (7.1), its domain of validity may strongly
depend on the dimension of the system. As a second illustration of our variational approach we
consider, therefore, a small two-dimensional system of N = 16 atoms, in an isotropic configuration
where an ED solution based on the truncation of the Hilbert space is still available.

Our goal here is to show the influence of the final Rabi frequency Ω(t f ) on the validity of our
approach. To this end, we consider three different sweeps of the Rabi-frequency Ω and detuning ∆

along the paths shown in Fig. 7.4 corresponding to three final Rabi frequencies Ω(t f )/(2π) = 0, 1, 4
MHz at a positive detuning ∆(t f )/(2π) = 2 MHz. In all three cases we start at a negative detuning
∆(t0)/(2π) = −1 MHz and zero Rabi frequency and compute the mean distribution of excited Rydberg
atoms at the end of the sweep, which is given by |βi|2. We choose a lattice spacing a = 532 nm and
the Rydberg level |↑〉 = |25P3/2,m j = 3/2〉 corresponding to a C6 coefficient Eq. (7.13) where due to
the isotropic configuration considered here, the angle θ is fixed to π

2 . The sweep time is t f = 16 µs
which is lower than the lifetime of the Rydberg excitations τ ≈ 29 µs [29].

Fig. 7.5 shows final distributions of Rydberg atoms computed using our TDVP approach (upper
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Figure 7.5. Comparison of TDVP with ED. Upper panel: distribution of Rydberg atoms
for isotropic interactions after the three parameter sweeps shown in Fig. 7.4 using the TDVP
approach. Lower panel: same as in the upper panel but calculated using ED. For small final
Rabi frequencies the results obtained by both approaches are basically indistinguishable. The
corresponding energies per particle are E = 0.603, 0.556, 0.204 h MHz for (a), (b), (c) in the
upper panel and E = 0.602, 0.548,−0.049 h MHz for (d), (e), (f) in the lower panel.

panel) as well as ED (lower panel) for the three sweeps (a) (b) (c). Note that in contrast to the 1D
case, the variational ansatz describes the sweep to the classical limit Ω(t f ) = 0 perfectly well, even
though our approach propagates the wave-function through the non-classical region Ω > 0, where our
ansatz is not strictly valid. In a perfectly adiabatic situation corresponding to t f → ∞, the final state
obtained with our time-dependent variational approach would coincide with the variational ground
state, which is the exact ground state in this case. The fact that our results for a finite sweep time
compare very well with the exact solution suggests that deviations from adiabaticity are negligible.
For such a small system size, the competition between the laser excitation and the vdW interactions
results in a regular pattern of four Rydberg atoms placed at the corners of the system. We also obtain
a good agreement for Ω(t f )/(2π) = 1 MHz and the corresponding pattern is not modified compared
to the classical limit. However, for Ω(t f )/(2π) = 4 MHz, our ansatz overestimates the ground state
energy considerably, even though the distribution of excitations looks similar to the exact result. It
is also instructive to study how the system behaves during the sweep. Fig. 7.6s (a) and (b) show a
comparison of Rydberg density fR and energy as function of time during the parameter sweep for the
three sweep protocols shown in Fig. 7.4. Again a substantial difference between TDVP and ED is
only visible for sweeps to large final Rabi frequencies.

The results shown in Fig. 7.5 and Fig. 7.6(b),(c) allow to assess the validity of our approach for
a realistic dynamical state preparation. We are also interested in estimating the typical value of the
parameters Ω, ∆ where our ansatz can describe the ground state of the model Eq. (7.1), regardless
of the details of the dynamical state preparation. To this end we consider a very large sweep time
t f = 150 µs to ensure that the equations of motion Eq. (7.7) lead to the formation of the variational
ground state whereas the solution obtained with ED results in the exact ground state. We then estimate
the regime of validity of the variational ground state as follows: we compute the Rydberg density
at the end of the parameter sweep using both TDVP and ED and plot the relative difference of fR
between the two approaches as a function of the final Rabi frequency Ω(t f ) at the end of the sweep.
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Figure 7.6. Comparison between TDVP and ED. (a) density of Rydberg atoms fR as a
function time t during the sweep for the three paths shown in Fig. 7.4. (b) Energy as func-
tion of sweep time. (c) graph shows the difference in the Rydberg density ∆ fR/ fR after an
adiabatic parameter sweep as calculated from TDVP with respect to ED as a function of
the final Ω(t f )/(2π) and for four different final detunings ∆(t f )/(2π) = 1, 2, 3, 4 MHz. For
∆(t f )/(2π) = 2 MHz the difference ∆ fR of the Rydberg density between the two methods starts
to deviate from zero if Ω(t f )/(2π) & 1 MHz, indicating the breakdown of our variational ap-
proach.

Results are shown in Fig. 7.6(c) for four different final detunings ∆. We see that for a final detuning
∆(t f )/(2π) = 2 MHz the difference ∆ fR/ fR starts to deviate from zero if the sweep protocol samples
Rabi frequencies which are larger than Ω(t f )/(2π) > 1 MHz. Accordingly, for ∆/(2π) = 2 MHz our
variational ansatz is correct as long as Ω/(2π) . 1 MHz. We note, however, that this criterion was
obtained for a small system and potentially depends on system size.

7.4.2 Isotropic Rydberg crystals

Now that we have assessed the regime of validity of our ansatz and checked in particular that it
can quantitatively describe the dynamical preparation of Rydberg crystals in small two dimensional
systems, let us now present our results for large system sizes where an exact numerical treatment is
not possible.

We first describe the formation of Rydberg crystals in an isotropic configuration. In analogy to
the experimental setup [13], we start from a circular (cookie shaped) distribution of N = 777 ground-
state atoms considering the three sweeps path shown in Fig. 7.4 keeping the other parameters of the
last subsection unchanged.

Let us first comment on our choice of sweep paths (Fig. 7.4). In order to prepare a state which is as
close as possible to the variational ground-state, it is particularly important to circumvent the region
around the critical point Ω = 0,∆ = 0 [7] during the sweep into the crystalline phase. Indeed we found
that the energy of the final state increases substantially if the initial negative detuning is chosen too
small. On the other hand, if the initial detuning is too large, the length of the sweep path in parameter
space is long and the rate of change of the parameters during the same sweep time is increasing such
that the sweep becomes less adiabatic again. This is shown in Fig. 7.7 where we plot the energy of
the final state obtained for Ω(t f ) = 0 and ∆(t f )/(2π) = 2 MHz as a function of the initial detuning,
for different sweep times. We found that the optimal choice of the initial detuning is ∆(t0)/(2π) = −1
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Figure 7.7. Influence of the sweep time t f and of the initial detuning ∆(t0) on the energy E
at the end of the sweep for the case of isotropic interactions and Ω(t f ) = 0 and ∆(t f )/(2π) = 2
MHz. E0 represents the minimum of the energy obtained for t f = 16 µs and ∆(t0)/(2π)= -1
MHz which corresponds to the first path in Fig. 7.4. The results show that the fidelity to stay in
the ground-state during the parameter sweep decreases if ∆(t0) is too small or the sweep time
is too short.

MHz. In this case our sweeps are almost adiabatic in the sense that the energy of the states at the
end of the sweeps is less than three percent above the ground-state energy which we found by an
independent optimization of the variational wave-functions using a homotopy-continuation method
[38].

Results for the final distribution of Rydberg excitations at the end of the sweep are shown in
Fig. 7.8. We note that for all three sweep protocols we obtain a single crystalline pattern which re-
spects the symmetries of the cookie-shaped atom distribution. The shape of the crystal is pinned by
boundary effects and the variational ground-state that we find is non-degenerate and unique. This is in
contrast to experiments, where different symmetry-related, almost degenerate crystal configurations
are observed from shot to shot [13]. Also note that our equations of motion for the variational param-
eters Eq. (7.7) preserve symmetries during time evolution. If degenerate, symmetry related ground
states exist for a given set of parameters ∆ and Ω, the time evolution passes through a bifurcation
point, which signals the presence of the phase transition to the crystalline state. At this point tiny
numerical errors will pick out one of the degenerate ground states. It is important to emphasize, how-
ever, that we always found a unique, symmetric variational ground-state for the parameters considered
here.

Ideally, the first sweep to a final Rabi frequency Ω(t f ) = 0 shown in Fig. 7.4(a) prepares the
ground-state of the classical Ising model, if the sweep were perfectly adiabatic. In this case the
arrangement of excited Rydberg atoms would correspond to the minimum energy configuration of
classical charges with a 1/r6 potential and the probability to be in the Rydberg state is either zero or
one in this limit. From Fig. 7.8(a) one can see that the probability to be in the Rydberg state is ∼ 0.8
rather than 0 or 1 on some sites, indicating deviations from adiabaticity. Nevertheless, a crystalline
arrangement of Rydberg atoms is clearly visible. The average density of Rydberg atoms is fR = 0.09
in this case, which is in accordance with an average distance between two excitations on the order of[
C6

(
π
2

)
/~∆

]1/6 ≈ 2 − 3.
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Figure 7.8. Distribution of Rydberg excitations at the end of the three parameter
sweep protocols (a), (b), (c) shown in Fig. 7.4 for the case of isotropic interactions.
Plotted is the probability |βi|2 to be in the Rydberg state on each lattice site. The cor-
responding energies per lattice site are E = 0.86, 0.82, 0.52 h MHz. The crystalline
arrangement of Rydberg atoms is clearly visible. In the classical limit Ω → 0 (left)
the excitation probabilities are close to either zero or one, whereas quantum superpo-
sitions with intermediate values of |βi|2 appear at finite Ω (middle, right).

For the case of sweeps to finite final Rabi frequencies Ω(t f ) away from the classical limit [fig-
ures 7.8(b) and (c)], quantum superpositions between ground-state and excited atoms are present, and
the probability to be in the Rydberg state is thus no longer restricted to zero or one. For increasing
final Ω quantum fluctuations are stronger and the average number of Rydberg excitations increases,
while the average excitation probability decreases. At large enough Ω the crystalline arrangement
finally melts and one enters a quantum disordered regime where the average excitation probability is
equal on all lattice sites. This trend is visible in panel (c).

Note that the complex crystalline arrangement of Rydberg atoms is strongly dependent on the
size and of the shape of the system. In an infinite system the excited atoms would ideally maxi-
mize their average distance, which would result in a triangular lattice of Rydberg atoms. Due to the
underlying square optical lattice strong commensurability issues arise, however, in particular if the
average distance between excitations is on the order of a few lattice spacings. We observe that the
crystalline structure is strongly pinned by boundary effects in our case and the crystalline structures
in the classical limit thus do not resemble those which supposedly exist in the thermodynamic limit
[31].

7.4.3 Anisotropic Rydberg crystals

We now describe the preparation of anisotropic Rydberg crystals. In this case, the magnetic field is
set along the z-direction of the optical lattice, as shown in Fig. 7.1(a), keeping the other parameters
such as sweep paths, atom distribution and the Rydberg level unchanged. Accordingly, the interaction
between Rydberg atoms is anisotropic and stronger in x- than in z-direction.

Results for the three sweep paths are presented in the upper panel of Fig. 7.9. As in the isotropic
case, the crystal progressively melts as Ω is increased. Note, however, that the anisotropy is visible
in all cases and the crystalline structure melts first in the weakly interacting z-direction while trans-
lational symmetry is still broken in the strongly interacting x-direction. Again, we observe that the
form of the Rydberg crystal is strongly pinned by boundary effects, similar to the isotropic case.
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Figure 7.9. Upper panel: distribution of Rydberg excitations at the end of the three pa-
rameter sweep protocols (a), (b), (c) shown in Fig. 7.4 for the case of anisotropic interactions.
Corresponding energies per lattice site are E = 0.79, 0.74, 0.30 h MHz. Lower panel: distri-
bution of Rydberg excitations obtained after a direct minimization of the variational ground-
state energy. The Rabi frequencies and detunings match the parameters at the end of the
sweep protocols in the upper panel. Corresponding ground-state energies per particle are
E = 0.77, 0.72, 0.29 h MHz. Defects in the crystalline arrangement due to the small non-
adiabaticity of the sweep protocols are clearly visible in the left panel.

In the classical limit Ω = 0, we find an anisotropic crystal with an average distance between

excitations on the order of
[
C6

(
π
2

)
/~∆

]1/6 ≈ 3 in the x−direction and of [C6 (0) /~∆]1/6 ≈ 1 − 2
in the z−direction. Again, the results for the sweep to the classical limit Ω(t f ) = 0 indicate that
the preparation was not perfectly adiabatic. Indeed, the excitation probabilities differ from 0 or 1
at the end of the parameter sweep, as in the case of isotropic interactions. The deviations from
adiabaticity are even more pronounced for anisotropic interactions, as we find non-classical excitation
probabilities on the order of ∼ 0.5 in this case. This can be attributed to the fact that the excitation gaps
are smaller compared to the case of isotropic interactions, due to the substantially weaker interaction
in z-direction.

In order to estimate the fidelity of the dynamic state preparation scheme we plot the distribution of
Rydberg atoms obtained after a direct minimization of the ground-state energy within our variational
ansatz in the lower panel of Fig. 7.9. Comparing this to the distributions obtained after the parameter
sweep it is apparent that a number of defects are created due to the not fully adiabatic sweep protocol.
Again, the crystalline arrangement is not strongly affected by the rather short sweep time, however.
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7.5 Conclusion and outlook

In the present work we have developed a time dependent mean field theory to model the dynamical
preparation of anisotropic Rydberg crystals with atoms in 2D optical lattices. In addition we have
presented results of numerical simulations relevant for experimentally realistic system sizes, in the
limit of patterns with a large number of Rydberg excitations.

We note that the anisotropic character of the vdW interactions has been seen experimentally in
a recent Rydberg-blockade experiment involving Rydberg s and d-states [39]. In contrast to the
present work, where we considered the anisotropic vdW interactions between single Zeeman levels
of the Rydberg states, i.e. in the limit of large Zeeman splitting, in these experiments vdW couplings
involving transitions between Zeeman levels can be important. This interplay leads to several new
physical phenomena, which will be presented in a future work.
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We show how a broad class of lattice spin-1/2 models with angular- and distance-dependent
couplings can be realized with cold alkali atoms stored in optical or magnetic trap arrays. The
effective spin-1/2 is represented by a pair of atomic ground states, and spin-spin interactions are
obtained by admixing van der Waals interactions between fine-structure split Rydberg states with
laser light. The strengths of the diagonal spin interactions as well as the “flip-flop”, and “flip-
flip” and “flop-flop” interactions can be tuned by exploiting quantum interference, thus realizing
different spin symmetries. The resulting energy scales of interactions compare well with typical
temperatures and decoherence time-scales, making the exploration of exotic forms of quantum
magnetism, including emergent gauge theories and compass models, accessible within state-of-
the-art experiments.

8.1 Introduction

Understanding exotic forms of quantum magnetism is an outstanding challenge of condensed matter
physics [1]. Cold atoms stored in optical or magnetic trap arrays provide a unique platform to re-
alize interacting quantum spins in various lattice geometries with tunable interactions, and thus the

†The author of the present thesis was strongly involved in doing the calculation presented in this work and in writing
the manuscript. In particular, he preformed the atomic physics calculation deriving the van der Waals interactions. This
chapter was updated on 13th of Oct 2014.
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Figure 8.1. (a) Atoms loaded in a Kagome lattice driven by laser light (L) propagating along
the z-axis defined by the magnetic field (B).(b) Atomic level scheme: 87Rb atoms with hyperfine
ground states |gσ〉 (representing spin-1/2) coupled to n2P1/2 Rydberg states with σ± polarized
light and interacting via vdW interactions. (c) Spin interactions Jα of Eq. (8.1) as a function
of distance ρ realizing quantum spin ice on a Kagome lattice [10]. Red (gray) dotted lines
indicate NN and NNN interactions [red (gray) arrows in panel (a)]. Here |r±〉 = |602P1/2,± 1

2 〉
with Rabi frequencies Ω- = Ω+/4 = 2π × 2.5 MHz and detunings ∆- = −∆+ = 2π × 50 MHz
(so that J+- = 0 — see text).

basic ingredients of competing magnetic orders and frustrated magnetism [2]. A central experimen-
tal challenge for the observation of magnetic phases with cold atoms is given by the requirement of
ultra-low temperatures (and entropies), as set by the interaction scales of magnetic interactions. For
spin models derived from Hubbard dynamics for atoms in optical lattices, this energy scale is set by
the super-exchange processes, J ∼ t2

H/U, with tH the hopping amplitude of atoms between lattice
sites, and U the onsite interactions, resulting in (rather small) energy scales of a few-tens of Hertz (or
few nK) regime [3] (see however [4]). Below we take an alternative route, and show that laser-excited
interacting Rydberg atoms [5] provide us not only with a complete toolbox to design and realize the
complex spin-1/2 models of interest, but also give rise to energy scales much larger than relevant
decoherence rates. In contrast to models where a spin is encoded directly in a Rydberg state [6] we
use ground state atoms weakly dressed with Rydberg states by laser light [7], which can be trapped
in (large spacing) optical [8] or magnetic lattices [9] of various geometries. This should make phases
of exotic quantum magnetism accessible to present atomic experiments.

We are interested in general XYZ spin-1/2 models with both isotropic and anisotropic interactions
in 2D, as represented by the Hamiltonian

H =
∑
i< j

[
Jz(ri j)S i

zS
j
z + J||(ri j)S i

z

+
1
2

(
J+-(ri j)S i

+S
j
- + J++(ri j)S i

+S
j
+ + h.c.

)]
,

(8.1)

where S j
α are spin-1/2 operators at the lattice sites r j. Our goal is to design spin-spin interaction pat-

terns Jα, including nearest-neighbor (NN) and next-nearest-neighbor (NNN) couplings, as a function



8.. The model 153

of ri j = ri − r j including the range, angular dependence and strength of the couplings. Below we
wish to illustrate the broad tunability offered by our setup in the context of a paradigmatic example
illustrated in Fig. 8.1: on a Kagome lattice, different coupling realizations of Eq. (8.1) encompass a
variety of physical models, including Kagome quantum spin ice (requiring J+- = 0) [10] and extended
XYZ models [11]. These models encompass a prototypical feature of frustrated quantum magnets,
i.e., the emergence of dynamical gauge fields [1]. The specific form of the underlying gauge theories
and the presence of topological spin liquid phases has been actively debated, making the controlled
realization of such Hamiltonian dynamics timely matched with current theoretical efforts.

8.2 The model

In our setup we consider single atoms loaded in trap arrays of tunable geometry with spacings on the
micrometer scale as demonstrated in recent experiments [8, 9]. We are interested here in alkali atoms,
where a pair of states from the two hyperfine manifolds in the atomic ground state represents the effec-
tive spin-1/2 [12]. To be specific we consider 87Rb atoms and choose |g+〉 ≡ |52S 1/2, F = 2,mF = 2〉
and |g-〉 ≡ |52S 1/2, F = 1,mF = 1〉 as our spin-1/2 [see Fig. 8.1(b)].

Interactions between these effective spin states are induced by admixing highly lying Rydberg
states to the atomic ground states with laser light, where van der Waals (vdW) interactions provide
a strong coupling even at micrometer distances. The key element is the excitation of Rydberg states
with finite orbital angular momentum exhibiting fine structure splitting, and it is the combination
of the spin-orbit interaction and vdW interactions which provides the mechanism for the spin-spin
coupling. As indicated in Fig. 8.1(b), we assume excitations by left and right circularly polarized
lasers with propagation direction orthogonal to the lattice plane. In this configuration the ground
states are coupled to the two Rydberg Zeeman levels |rσ=±〉 ≡ |n2P1/2,m j = ±1

2 〉 ⊗ |mI = 3
2 〉. Here,

|mI = 3
2 〉 is the maximally polarized nuclear spin state, which remains a spectator in our dynamics 1.

This choice of laser configuration leads to spin couplings Jα(ρi j) with a purely radial dependence as
a function of the distance ρi j = |ri− r j|, as shown in Fig. 8.1(c). This illustrates the design of Kagome
quantum spin ice (J+- = 0) [10] for realistic atomic parameters. As discussed below, an angular
dependence of Jα can be obtained by inclining the laser beams [13].

To obtain the desired spin-spin interactions in Eq. (8.1) we consider a pair of atoms and derive by
adiabatic elimination of the Rydberg levels the effective Hamiltonian for the ground state spins. Our
starting point is the microscopic Hamiltonian, Hmic =

∑2
i=1

[
H(i)

A + H(i)
L

]
+ HvdW, which is written as

the sum of a single atom Hamiltonians including Zeeman split energy levels of the various states, the
laser driving and the vdW interaction. In the rotating frame we have H(i)

A = −∆+|r+〉i〈r+| − ∆-|r-〉i〈r-|
and H(i)

L = 1
2Ω+eiϕ+ |g-〉i〈r+|+ 1

2Ω-eiϕ- |g+〉i〈r-|+h.c., where ∆σ denotes the laser detunings, Ωσ the Rabi
frequencies and ϕσ local laser phases. Since the derivation of the effective Hamiltonian is invariant
under local gauge transformations, in the following we fix ϕσ = 0 without loss of generality.

At the heart of our scheme is the vdW interaction HvdW between the Zeeman sublevels in the
n2P1/2 manifold. For the atomic configuration of Fig. 8.1(a) (atoms in the xy-plane and lasers propa-

1For laser detunings and vdW interactions much larger than the hyperfine splitting we can ignore the hyperfine interac-
tions in the Rydberg state and the nuclear spin becomes a spectator.



154 Publication: Frustrated Quantum Magnetism with Laser-Dressed Rydberg Atoms

(a)

(b)
����

��������������
���

���
����

�����
�������

��

�������������
��������

� � �

�

�

�

�

�
�
�
� � � � � � � � � � � � �

� �
� �

� �
� �

� �
� �

� �
� �

� � �
� �

�

� �

(c)

40 50 60 70

�4
�2

2
4

30 40 50 60 70

1

2

Figure 8.2. (a) C6 coefficients c++, c+-, and w of Eq. (8.2) in atomic units for Rb atoms
vs. principal quantum number n. (b) Ratios of diagonal and the m-changing C6. (c) Eigenen-
ergies Eσσ′ (ρ) (8.4) (thick solid lines), energies of states with a single Rydberg excitation in
r+ (gray dashed line) and r- (gray dotted line) vs. ρ/rc with rc = (c++/2|∆+|)1/6. Asymptotic
energies and eigenstates are indicated on the right.

gating along z) this vdW interaction has the structure (see SM)

HvdW(ρ) =


V++(ρ) 0 0 W++(ρ)

0 V+-(ρ) W+-(ρ) 0
0 W+-(ρ) V-+(ρ) 0

W++(ρ) 0 0 V--(ρ)

 (8.2)

written in the basis {|r-r-〉, |r-r+〉, |r+r-〉, |r+r+〉} of Rydberg Zeeman states. Here, Vσσ′(r) ≡ cσσ′/ρ6

are the (diagonal) vdW interactions between the pair states |rσrσ′〉, with V++ = V-- and V+- = V-+.
In addition we have “flip-flop” interactions between the states |r-r+〉 and |r+r-〉 and also “flip-flip”
and “flop-flop” interactions between the Rydberg states |r-r-〉 and |r+r+〉, with coupling strength W+-
and W++, respectively, where W+-(ρ) = −3W++(ρ) ≡ w/ρ6. This arises from the fact that in our
configuration the total magnetic quantum number M = m j + m j′ can change by 0 or ±2 [14]. The
corresponding C6-coefficients c++, c+- and w of Rb, which can be attractive or repulsive, are plotted in
Fig. 8.2(a) as a function of the principal quantum number n. We emphasize that in writing the time-
independent Eq. (8.2) we have assumed ∆Er−(∆+−∆-) = 0, corresponding to the energy conservation
condition for Raman processes between the spin ground states. We note, however, that ∆+ and ∆- can
still be chosen independently via an appropriate choice of laser frequencies and Rydberg Zeeman
splitting ∆Er. 2

2Away from the energy conservation condition the terms W++ in (8.2) will carry a time-depencence
exp[i2(∆Er − (∆+ − ∆-))t]
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8.3 Adiabatic elimination and effective spin Hamiltonian

In the following we will derive the effective spin-spin interactions of Eq. (8.1) by weakly admixing
these Rydberg-Rydberg interactions to the ground state manifold with lasers. We note, however, the
basic features of these spin-spin interactions can already be identified in HvdW: (strong) diagonal
interactions V++ and V-+ will induce tunable Jz interactions between the dressed ground states |g-〉
and |g+〉, while the couplings W+- and W++ give rise to the J+- and J++ spin flips terms, respectively.

In the limit of weak laser excitation we obtain the effective spin-spin interaction between the
ground states by treating the laser interactions H(1)

L + H(2)
L as a perturbation. As a first step we diag-

onalize H(1)
A + H(2)

A + HvdW as the dominant part of the Hamiltonian in the subspace of two Rydberg
excitations. This results in four new eigenstates

|Eσσ(ρ)〉 =
[
cos χ(ρ)|rσrσ〉 + σ sin χ(ρ)|rσ̄rσ̄〉] /√2,

|Eσσ̄(ρ)〉 = (|rσrσ̄〉 + σ|rσ̄rσ〉) /
√

2
(8.3)

where σ = +, - and we defined σ̄ ≡ −σ with corresponding eigenenergies

Eσσ(ρ) = V++(ρ) − ∆+- + σ

√
δ2
+- + W++(ρ)2,

Eσσ̄(ρ) = V+-(ρ) − ∆+- + σW+-(ρ),
(8.4)

shown in Fig. 8.2(c). These new eigenenergies can be interpreted as Born-Oppenheimer adiabatic
potentials. Here, we used the short hand notation ∆+- ≡ ∆+ + ∆-, δ+- ≡ ∆+ − ∆- and tan 2χ(ρ) =

W++(ρ)/δ+-. We note that for large distances E++(ρ → ∞) = −2∆+ and E--(ρ → ∞) = −2∆-, corre-
sponding to states |r+r+〉 and |r-r-〉, respectively, while the states |r-r+〉 and |r+r-〉 become asymptoti-
cally degenerate with energy E+-(ρ → ∞) = E-+(ρ → ∞) = −(∆+ + ∆-). The ratios α1 = W+-/V+-
and α2 = W++/V++ shown in Fig. 8.2(b) determine the sign of the slope of the new eigenenergies
at short distances. In particular, for n2P1/2 states of 87Rb we find that for n ≥ 41 the eigenenergies
E++(ρ), E+-(ρ) and E-+(ρ) are repulsive while E--(ρ) is attractive at short distances [see Fig. 8.2(c)].
For detunings ∆+/∆- < 0 and ∆+ + ∆- < 0 we avoid resonant Rydberg excitations for all distances,
i.e. there are no zero-crossings of Eσσ′(ρ), and perturbation theory in Ωσ/|Eσ′σ′′ | is valid for all ρ.

In 4th order in the small parameter Ωσ/|Eσ′σ′′ | � 1 we obtain an effective spin-spin interac-
tion Hamiltonian H̃ =

∑
σ,σ′

[
Ṽσσ′ |gσgσ′〉〈gσgσ′ | + W̃σσ′ |gσgσ′〉〈gσ̄gσ̄′ |

]
between the dressed ground

states atoms. The diagonal interactions are

Ṽσσ =
Ω4
σ̄

8∆3
σ̄

V++ (V++ − 2∆σ) −W2
++

W2
++ − (V++ − 2∆+) (V++ − 2∆-)

,

Ṽ+- =
Ω2
+Ω

2
-

16∆2
+∆

2
-

(∆+ + ∆-)
V+- (∆+- − V+-) + W2

+-

(∆+- − V+-)2 −W2
+-

,

(8.5)

which, for small distances, are step-like potentials with Vσσ′(ρ→ 0) = −Ω2
σ̄Ω2

σ̄′(∆σ̄+∆σ̄′)/(16∆2
σ̄∆2

σ̄′).
We have absorbed single particle light shifts in the definition of the detunings (see SM). For the “flip-
flop” and “flop-flop” interactions we get

W̃+- =
Ω2
+Ω

2
-

16∆2
+∆

2
-

(∆+ + ∆-)2 W+-
(∆+ + ∆- − V+-)2 −W2

+-

,

W̃++ = − Ω2
+Ω

2
-

4∆+∆-

W++
W2
++ − (V++ − 2∆+) (V++ − 2∆-)

,

(8.6)
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(a)

(b)

Figure 8.3. Path of perturbative couplings between the states (a) |g+g+〉 and |g-g-〉 and
(b) |g+g-〉 and |g-g+〉 visualizing the perturbative expressions behind J++ and J+- of Eqs. (8.7),
respectively. The energies Eσσ′ are plotted for a specific interatomic distance ρ (with abbrevi-
ation Ω̄σ ≡ Ωσ/

√
2). Yellow and blue dotted paths can interfere destructively (see text).

which are peaked at R6
+- =

√
c2
+- − w2

+-/|∆++∆-| and R6
++ =

√
(c2
++ − w2

++)/(4∆+∆-), respectively, and
go to zero for small and large distances. The spin couplings of Eq. (8.1) are then obtained as

J||(ri j) =
1
4

[
Ṽ++(ri j) − Ṽ--(ri j)

]
,

Jz(ri j) =
1
4

[
Ṽ--(ri j) − 2Ṽ+-(ri j) + Ṽ++(ri j)

]
,

J+-(ri j) = 2W̃+-(ri j), and J++(ri j) = 2W̃++(ri j).

(8.7)

Figure 8.1(c) shows a plot of (8.7) for n = 60 P1/2 and a typical set of laser parameters. The diagonal
Jz interaction is steplike with a repulsive (antiferromagnetic) soft core at small distances, ρ < 2 µm
and an attractive (ferromagnetic tail) at long distances. The spin flip term J++ is peaked at ρ ≈ 2.5 µm
while J+- = 0, thus realizing the Hamiltonian of quantum spin ice on a Kagome lattice [10] at a
lattice spacing a = 1.8 µm. The lifetime of the 60P1/2 Rydberg state including blackbody radiation
at T = 300 K is τ60 = 133 µs [15] which yields an effective ground state decay rate of Γeff =

(Ω-/2∆-)2τ−1
60 ≈ 2π × 18 Hz for Ω- = 2π × 5 MHz and ∆- = 2π × 50 MHz, which is more than one

to two orders of magnitude smaller than typical interaction energy scales shown in Fig. 8.1(c). The
fine structure splitting between the 60P1/2 and 60P3/2 manifolds is ∆EFS ≈ 2π × 920 MHz which is
much larger than the Rydberg interactions for distances larger than about 2 µm.

The form and strength of the effective spin-spin interactions of Eqs. (8.5) and (8.6) shown in
Fig. 8.1(c), including J+- = 0 for ∆+ = −∆-, can be understood in terms of quantum interference
of the various paths contributing to the perturbation expressions (8.7). These paths are illustrated in
Fig. 8.3: both the states |g+g+〉 and |g-g-〉 (panel a) and also the states |g+g-〉 and |g-g+〉 (panel b) are
coupled via four laser photons (blue arrows), giving rise to W̃++ and W̃+-, respectively. In particular,
the states |g+g+〉 and |g-g-〉 are coupled either via |E++〉 or via |E--〉 with position dependent coupling
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Figure 8.4. (a-c) Effective spin-spin interactions Jα (8.1) as a function of r and ϑ for a
laser propagating along the z axes and atoms in the zx-plane. Here |r±〉 = |602P1/2,± 1

2 〉 with
Ω- = Ω+/2 = 2π × 5 MHz and (∆-,∆+) = 2π × (−60, 40) MHz. (d) Cut through the energy sur-
faces Eσσ′ (8.4) along the z axis. In contrast to Fig. 8.2(c) resonances appear, indicated with
a star where Jα becomes singular as shown in panels (a-c). (e) Cut through panels (a-c) for
ϑ = 0 (solid lines) and ϑ = π/8 (dotted lines).

rates Ωσ sin χ(ρ) and Ωσ cos χ(ρ). For large distances sin χ(ρ) → 0 and thus W̃++ → 0 while at short
distances the “flop-flop” process is suppressed by the large resolvents E−1

σσ′ giving rise to the peaked
form of W++ as a function of ρ. Panel (b) shows eight possible paths which can couple the |g+g-〉
and |g-g+〉 states. We note that both the two blue and the two yellow dotted paths coupling |g+g-〉
either to |E+-〉 or to |E-+〉, respectively, differ only by the energy denominators ∆−1

+ or ∆−1
- . Thus, for

∆+ = −∆- the two yellow dotted paths and also the two blue dotted paths will interfere destructively
and the “flip-flop” process vanishes, i.e. J+- = 2W̃+- = 0, as shown in Fig. 8.1(c).

8.4 Anisotropic models

We now turn to a setup with laser propagation direction (z-axis) inclined with respect to the 2D plane
containing the trapped atoms. This allows for an angular dependence (anisotropy) of the Jα(ri j).
In addition, we find as a new feature the appearance of resonances in the spin-spin couplings as a
function of spatial distance in the lattice. The origin of the anisotropy is the strong dependence of
the various vdW interactions matrix elements on the angle ϑ between the z-axis (defined by the laser
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propagation direction) and the relative vector connecting the two atoms i and j (see SM for details).
As an example, we show in Fig. 8.4 the spin-spin interactions for a propagation direction of both lasers
parallel to the 2D plane (zx-plane). The anisotropy of the Jα as a function of the angle ϑ is shown
in panels (a-c). In particular, W++(r, ϑ) ∼ sin2 ϑ, and thus vanishes along the z direction, reflecting
the conservation of angular momentum M = m j + m′j. In addition for ϑ , π/2 resonances appear at
specific interparticle distances, where one of the eigenenergies Eσσ′ (8.4) crosses the energy surface
E = 0 corresponding to ground state atoms |gσ, gσ′〉 (indicated by the red stars in panel d). This gives
rise to clepsydra-shaped resonances in Jα, as shown in panels a-c, which in our perturbative treatment
appear as singularities as a function of the distance, with Jα changing sign across the resonance.

8.5 Conclusion and Outlook

We conclude with a perspective on the quantum many-body physics opened by the present work. The
toolbox described above, together with techniques of adiabatic state preparation [16] paves the way
toward the engineering of frustrated spin models, where different aspects of the interaction pattern
can be exploited. First, the independent tunability of both J+- and J++ couplings selects a particular
spin symmetry, either conserving the total magnetization

∑
j S z

j or the parity
∏

j S z
j, giving rise to

a U(1) or Z2 symmetry, respectively. This finds immediate application in the context of extended
quantum ice models [17], as illustrated in Fig. 8.1 for Kagome quantum spin ice [10]. Within the same
geometry, moving away from ∆+ = −∆- regime, a finite J+- can be switched on, and extended XYZ
models can be realized [11, 18]. The ability of controlling each coupling strength in an angular- and
distance-dependent way (c.f. Fig. 8.4) points toward the realization of models displaying intermediate
symmetry, such as, e.g., compass models [19]. By properly choosing the lattice spacings on a square
lattice, it is possible to single out interactions along one direction of pure zz-type, and of ++ type
along the other, thus realizing extended square compass models. The large energy scales provided by
the vdW interactions, combined with in situ measurement techniques demonstrated in large-spacing
lattices [8, 9], make the observation of different physical phenomena encompassed by these models,
such as emergent gauge theories and exotic spin liquid states [1], accessible within Rydberg atom
experiments.

Acknowledgment
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8.A Van der Waals interactions between j = 1/2 Rydberg states

Away from Foerster resonances two laser excited Rydberg atoms dominantly interact via van der
Waals interactions [5]. These van der Waals interactions, H(i,k)

vdW, will mix different Zeeman sublevels
|m j〉 in the nP1/2 manifold [14]. Let us denote by P̂ =

∑
i, j |mi,m j〉〈mi,m j| a projection operator into

the nP1/2 manifold, then dipole-dipole interactions

V (i,k)
dd (r) = −

√
24π

5
1
r3

∑
µ,ν

C1,1;2
µ,ν;µ+νY

µ+ν
2 (ϑ, ϕ)∗d(i)

µ d( j)
ν ,

will couple states in the P̂ manifold to intermediate states, Q̂α,β = |α, β〉〈α, β|, which have an energy
difference δαβ. Here, d(i) is the dipole operator of the i-th atom and r = (r, ϑ, ϕ) is the relative vector
between atom i and atom j in spherical coordinates and d(i)

µ is the µ-th spherical components (µ, ν ∈
{−1, 0, 1}) of the atomic dipole operator. With C j1, j2;J

m1,m2;M we denote the Clebsch-Gordan coefficients
and Ym

l are spherical harmonics. In second order perturbation theory this gives rise to

H(i,k)
vdW = P̂

∑
αβ

V (i,k)
dd Q̂α,βV

(i,k)
dd

δαβ
P̂, (8.8)

where H(i,k)
vdW is understood as an operator acting in the manifold of Zeeman sublevels.

Due to the odd parity of the electric dipole operators d(i)
µ and d( j)

ν , the dipole-dipole interaction,
Vdd, can couple initial nP1/2 states only to n′S 1/2 or n′′D3/2 states. Therefore, there are four possible
channels shown in Tab. 8.1(left) for which the matrix element 〈nP1/2m1|〈nP1/2m1|Vdd|n′, `α, jα,mα〉|n′′, `β, jβ,mβ〉
of Eq. (8.8) is non-zero. Here, (`α,β, jα,β) can either correspond to S 1/2 or D3/2 states depending on
the channel. While there is no selection rule for possible final principal quantum numbers n′ and n′′

which solely determine the overall strength of the matrix element, the dipole-dipole matrix element is
only non-zero if the magnetic quantum numbers and the spherical component of the dipole operator
fulfill m1 + µ = mα and m2 + ν = mβ. The total vdW interaction of Eq. (8.8) can be obtained by
summing over all channels ν, that is

V̂vdW =
∑
ν

C(ν)
6 Dν(ϑ, ϕ)/r6. (8.9)

Here, C(ν)
6 contains the radial part of the matrix elements

C(ν)
6 =

∑
nα,nβ

Rα1Rβ2Rα3Rβ4
δαβ

(8.10)

which accounts for the overall strength of the interaction and is independent of the magnetic quantum
numbers. With Rk

i =
∫

drr2ψni,`i, ji(r)∗r ψnk ,`k , jk (r) we denote the radial integral. The matrix

Dν(ϑ, ϕ) = P̂12

∑
mα,mβ

MνQ̂α,βMν P̂34 (8.11)
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on the other hand is a matrix in the subspace of magnetic quantum numbers which contains the relative
angles between the two atoms (s = 1/2)

〈m1,m2|Mν|mα,mβ〉 =(−)s−m1
√

(2`1 + 1)(2 j1 + 1)(2`α + 1)(2 jα + 1)
{
`1 `α 1
jα j1 s

} (
`α 1 `1
0 0 0

)
×(−)s−m2

√
(2`2 + 1)(2 j2 + 1)(2`β + 1)(2 jβ + 1)

{
`2 `β 1
jβ j2 s

} (
`β 1 `2
0 0 0

)
×

−
√

24π
5

∑
µ,ν

C1,1;2
µ,ν;µ+ν

(
jα 1 j1

mα µ −m1

) (
jβ 1 j2

mβ ν −m2

)
Yµ+ν

2 (ϑ, ϕ)∗
 .

(8.12)

For the individual channels ν ∈ {a, b, c, d} of Tab. 8.1 we find

(a) Da(ϑ, ϕ) =
2
9
I4 −D0(ϑ, ϕ),

(b) Db(ϑ, ϕ) =
4
9
I4 −D0(ϑ, ϕ),

(c, d) Dc(ϑ, ϕ) = Dd(ϑ, ϕ) = D0(ϑ, ϕ),

(8.13)

with I4 the 4 × 4 identity matrix and

D0(ϑ, ϕ) =
1
81


3 cos(2ϑ) + 11 3e−iφ sin(2ϑ) 3e−iφ sin(2ϑ) 6e−2iφ sin2(ϑ)

3eiφ sin(2ϑ) 13 − 3 cos(2ϑ) −3 cos(2ϑ) − 5 −3e−iφ sin(2ϑ)
3eiφ sin(2ϑ) −3 cos(2ϑ) − 5 13 − 3 cos(2ϑ) −3e−iφ sin(2ϑ)
6e2iφ sin2(ϑ) −3eiφ sin(2ϑ) −3eiφ sin(2ϑ) 3 cos(2ϑ) + 11

 (8.14)

written in the basis {| 1
2

1
2 〉, | 1

2
1
2 〉, | 12 1

2 〉, |12 1
2 〉} of Zeeman states in the j = 1/2 Rydberg manifold. For

the special orientations (i) ϑ = 0 we find

D0(0, 0) =
1
81


14 0 0 0
0 10 −8 0
0 −8 10 0
0 0 0 14

 (8.15)

and (ii) for ϑ = π/2 the matrix simplifies to

D0(π2 , 0) =
1
81


8 0 0 6
0 16 −2 0
0 −2 16 0
6 0 0 8

 . (8.16)

The total vdW interaction matrix in the nP1/2 subspace becomes

H(i,k)
vdW =

2
9

(
C(a)

6 + 2C(b)
6

)
I4 +

(
2C(c)

6 −C(a)
6 −C(b)

6

)
D0, (8.17)

where the coefficients C(ν)
6 depend on the principal quantum number n, see Fig. 8.5.

We note that the vdW Hamiltonian describing the interactions between S 1/2-states can be written
in the exact same form as Eq. (8.17). However, the coupling terms, C(ν)

6 , correspond to the channels
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Figure 8.5. We plot the C(ν)
6 for (left) nP1/2 and (right) nS 1/2 Rydberg states of 87Rb as a

function of the principal quantum number n for different channels ν of Tab. 8.1.

of Tab. 8.1(right). Therefore, the radial matrix elements for S 1/2 states differ only slightly due to
the fine structure splitting ∆EFS between P1/2 and P3/2 states, see Fig. 8.5(right). In the limit where
the fine structure can be neglected compared to other energy scales we find C(a)

6 = C(b)
6 = C(c)

6 =

C(d)
6 and the vdW interaction of Eq. (8.17) between nS 1/2 states becomes diagonal, that is H(i,k)

vdW =

(2/3)C(a)
6 I4. Thus, there is no vdW mixing between Zeeman sublevels if the fine-structure splitting

can be neglected. This can be understood by a simple argument: Since for s-states the different m j

levels are proportional to the electronic spin ms, that is |m j = ±1
2 〉 = |` = 0,m` = 0〉 ⊗ |ms = ±1

2 〉,
and since dipole-dipole interactions cannot mix spin degrees of freedom there cannot be any vdW
mixing of Zeeman levels in the absence of fine-structure. The first correction will be proportional to
∼ ∆EFS /δαβD0. It is therefore only the spin-orbit coupling in the intermediate Qα,β manifold which
mixes different Zeeman sublevels in the case of S 1/2 states.

On the contrary, for P1/2 states, the radial coefficients C(ν)
6 differ much more strongly due to the

energy difference between d- and s-states and due to the fact that Zeeman sublevels in the nP1/2
manifold are already a superposition between ms = ±1

2 states of the electronic spin. Therefore,
mixing of Zeeman sublevels for nP1/2 states can be of the same order of magnitude than the diagonal
terms and play a significant role. In the special (1D) case ϑ = 0, the doubly excited levels | 1

2
1
2 〉 and

|12 1
2 〉 are not coupled to any other doubly excited states which is a consequence of the conservation

of the total angular momentum. On the contrary, for ϑ = π/2 (atoms polarized perpendicular to the
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ν (`, j) + (`, j) −→ (`α, jα) + (`β, jβ)
(a) P1/2 + P1/2 −→ S 1/2 + S 1/2
(b) P1/2 + P1/2 −→ D3/2 + D3/2
(c) P1/2 + P1/2 −→ S 1/2 + D3/2
(d) P1/2 + P1/2 −→ D3/2 + S 1/2

ν (`, j) + (`, j) −→ (`α, jα) + (`β, jβ)
(a) S 1/2 + S 1/2 −→ P1/2 + P1/2
(b) S 1/2 + S 1/2 −→ P3/2 + P3/2
(c) S 1/2 + S 1/2 −→ P1/2 + P3/2
(d) S 1/2 + S 1/2 −→ P3/2 + P1/2

Table 8.1. Dipole-dipole interactions can couple P1/2 (left) and S 1/2 (right) states to
four channels (a-d).

plane), the Hamiltonian of Eq. (8.17) reduces to Eq. (8.2) with

c++ =
2
81

(
5C(a)

6 + 14C(b)
6 + 8C(c)

6

)
,

c+- =
2
81

(
C(a)

6 + 10C(b)
6 + 16C(c)

6

)
,

w++ = − 2
27

(
C(a)

6 + C(b)
6 − 2C(c)

6

)
,

w+- =
2
81

(
C(a)

6 + C(b)
6 − 2C(c)

6

)
= −w++

3
.

(8.18)

shown in Fig. 8.2(a) as a function of the principal quantum number n. In the following sections of this
supplemental material, we will consider this particular orientation as it is the simplest configuration
of vdW coupling where the doubly laser-excited state | 1

2
1
2 〉 is only coupled to | 12 1

2 〉.

8.B Laser excitation and hyperfine ground states

The laser Hamiltonian, H(i)
L , couples two hyperfine ground states |g-〉 and |g+〉 to the Zeeman sublevels

in the nP1/2 Rydberg manifold with detunings ∆σ and Rabi frequencies Ωσ (σ = +, -), respectively,
see Fig. 8.1(b). Uncoupling the nuclear spin the hyperfine ground states read

|g+〉 ≡ |52S 1/2, F = 2,mF = 2〉 = |m j = 1
2 〉|mI = 3

2 〉,
|g-〉 ≡ |52S 1/2, F = 1,mF = 1〉 =

1
2

[
|m j = 1

2 〉|mI = 1
2 〉 −

√
3|m j = −1

2 〉|mI = 3
2 〉

]
,

where mI is the projection quantum number of the nuclear spin. Using σ+ and σ- polarized light for
the transition

|g-〉 Ω+,σ+−−−−→ |nP1/2,m j = +1
2 〉 ⊗ |mI = 3

2 〉,
|g+〉 Ω-,σ-−−−−→ |nP1/2,m j = − 1

2 〉 ⊗ |mI = 3
2 〉,

(8.19)

respectively, couples to two different Rydberg states but both in the same nuclear state. Thus, hy-
perfine structure can be treated as a spectator in the Rydberg manifold. Neglecting (small) hyperfine
interactions, these are closed cycle transitions and do not couple to any other states in the hyperfine
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manifold. There are several alternative possibilities, e.g.

|g+〉 ≡ |52S 1/2, F = 2,mF = 1〉 =
1
2

[√
3|m j = 1

2 〉|mI = 1
2 〉 + |m j = −1

2 〉|mI = 3
2 〉

]
,

|g-〉 ≡ |52S 1/2, F = 1,mF = 0〉 =
1√
2

[
|m j = 1

2 〉|mI = − 1
2 〉 − |m j = − 1

2 〉|mI = 1
2 〉

]
,

which can be laser excited to specific Rydberg states

|g-〉 Ω+,σ+−−−−→ |nP1/2,m j = −1
2 〉 ⊗ |mI = 1

2 〉,
|g+〉 Ω-,σ-−−−−→ |nP1/2,m j = +1

2 〉 ⊗ |mI = 1
2 〉.

8.C Effective ground state potentials

8.C.1 Adiabatic elimination

In the dressing limit, Ωσ � ∆σ′ , atoms initially in their electronic ground states |g〉1 . . . |g〉N are off-
resonantelly coupled to the Rydberg states |r〉1 . . . |r〉N and the new “dressed” ground states inherit a
tunable fraction of the Rydberg interaction [7]. The effective interaction potential between N atoms
in their dressed ground states, |g̃〉1 . . . |g̃〉N , can be obtained by diagonalizing the Hamiltonian Hmic
for a fixed relative position and zero kinetic energy. The total Hamiltonian Hmic has block structure

Hmic =



H0 Ω1 0 0
Ω
†
1 H1 Ω2 0

0 Ω
†
2 H2 Ω3

0 0 Ω
†
3 H3

. . .


(8.20)

where Hn governs the dynamics in the subspace with n-Rydberg excitations present, while the Ωn

matrices describe the coupling between adjacent sectors n and n − 1 due to the laser. Only subspaces
Hn≥2 contain the interaction potentials Vi j and Wi j since we assume that ground and Rydberg states
do not interact at long distances.

Adiabatically eliminating (up to fourth order in Ωσ/∆σ′ � 1) of the Rydberg states yields an
effective interaction in the subspace of hyperfine states

H̃ = H0 + H1 −Ω1H−1
1 Ω

†
1

+Ω1H−1
1 Ω1H−1

1 Ω
†
1H−1

1 Ω
†
1

−Ω1H−1
1 Ω2H−1

2 Ω
†
2H−1

1 Ω
†
1

(8.21)

which yields (for two atoms)

H̃ =


Ṽ++ 0 0 W̃++
0 Ṽ+- W̃+- 0
0 W̃∗+- Ṽ-+ 0

W̃∗++ 0 0 Ṽ--

 (8.22)

written in the basis of the hyperfine states {|g+g+〉, |g-g+〉, |g+g-〉, |g-g-〉}. In the following we will
discuss the various potentials separately.
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Figure 8.6. Plot of the relative height given by Eqs. (8.24) for α2
1 = 1.41 (n = 60) and

σ = −1 for various laser detuning fractions β.

8.C.2 The potential Ṽ++ and Ṽ--

Adiabatic elimination up to fourth order in Ω/∆ of the Rydberg states yields

Ṽ++ =
Ω2
-

2∆-
− Ω4

-

4∆3
-

+
Ω4
-

4∆2
-

V++ − 2∆+

W2
++ − (V++ − 2∆-) (V++ − 2∆+)

,

Ṽ-- =
Ω2
+

2∆+
− Ω4

+

4∆3
+

+
Ω4
+

4∆2
+

V++ − 2∆-

W2
++ − (V++ − 2∆-) (V++ − 2∆+)

,

where asymptotically we just recover the single particle light shifts (up to fourth order)

Ṽ∞++ ≡ Ṽ++(r → ∞) =
Ω2
-

2∆-
− Ω4

-

8∆3
-

,

Ṽ∞-- ≡ Ṽ--(r → ∞) =
Ω2
+

2∆+
− Ω4

+

8∆3
+

.

(8.23)

The relative height of the potentials becomes

(Ṽ++ − Ṽ∞++)/Ṽ0 =
1 − α2

1 − σβ(r/R1)6

α2
1 −

[
1 − σ(r/R1)6] [1 − βσ(r/R1)6] ,

(Ṽ-- − Ṽ∞--)/Ṽ0 =

(
Ω+

Ω-

)4 1
β3

1 − α2
1 − σ(r/R1)6

α2
1 −

[
1 − σ(r/R1)6] [1 − βσ(r/R1)6] , (8.24)

with α2
1 = (w++/c++)2 [shown in Fig. 8.2(b)], β = ∆+/∆-, Ṽ0 = Ω4

-/(8∆3
-), σ = sign(c++)sign(∆-) and

R6
1 = |c++|/(2|∆-|). Due to the resolvent both potentials can be divergent for W2

++−(V++ − 2∆-) (V++ − 2∆+) =

0, when two Born-Oppenheimer surfaces undergo an avoided crossing. This happens at

R6
div =

(∆- + ∆+) c++ ±
√

(∆- − ∆+)2 c2
++ + 4∆-∆+w2

++

4∆-∆+
=

1 + β ±
√

(1 − β)2 + 4βα2
1

2β
σR6

1. (8.25)

In order to avoid such divergences and to obtain step-like potentials we require Im(Rdiv) , 0. For

α2
1 > 1 this is for example the case when β < 1 − 2α2

1 + 2α1

√
α2

1 − 1. Figure 8.6 shows a typical

example of Eq. (8.24) for n = 60 where α2
1 = 1.41 and σ = −1. In this case the potential has no

singularity (avoided crossing) for β < −0.30.

For α1 = 0 one obtains the well known result of a single dressed Rydberg level, i.e. (Ṽ++ −
Ṽ∞++)/Ṽ0 = −1/

[
1 − σ(r/R1)6

]
[7].
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8.C.3 Coupling element W̃++

For the coupling matrix element W̃++ adiabatic elimination up to fourth order in Ω/∆ yields

W̃++ = −ei∆φ Ω2
-Ω

2
+

4∆-∆+

W++
W2
++ − (V++ − 2∆-) (V++ − 2∆+)

(8.26)

where ∆φ = (k1 − k2)(r1 + r2) is the phase difference between the two lasers at the center of mass
position. Note that this phase can be gauged away using a local gauge transformation – a rotation
around the z-axis in the spin-basis. Asymptotically and at the origin (r = 0) the coupling matrix
element vanishes

W̃++(r → ∞) = 0, and W̃++(r → 0) = 0. (8.27)

In dimensionless units W̃++ reads

W̃++/Ṽ0 = − 1
2β

(
Ω+

Ω-

)2
α1σ(r/R1)6

α2
1 −

[
1 − σ(r/R1)6] [1 − βσ(r/R1)6] . (8.28)

Again, this matrix element is regular for α2
1 > 1 and β < 1 − 2α2

1 + 2α1

√
α2

1 − 1.

Figure 8.6(c) shows a typical example of Eq. (8.28) for n = 60 where α2
1 = 1.41 and σ = −1.

In this case the potential has no singularity (avoided crossing) for β < −0.30. The coupling matrix
element has a maximum at

R6
1,max =

√
(1 − α2

1)/βR6
1 with

W̃++(R1,max) = −ei∆φ Ṽ0

2β

(
Ω+

Ω-

)2
α1

1 + 2
√
β
(
1 − α2

1

)
+ β

.
(8.29)

8.C.4 Potential Ṽ+-

For the potential Ṽ+- adiabatic elimination up to fourth order in Ω/∆ yields

Ṽ+- =
Ω2
-

4∆-
+

Ω2
+

4∆+
− Ω4

-

16∆3
-

− Ω2
+Ω

2
-

16∆2
-∆+
− Ω2

+Ω
2
-

16∆-∆
2
+

− Ω4
+

16∆3
+

+
(∆- + ∆+)2 Ω2

-Ω
2
+ (∆- + ∆+ − V+-)

16∆2
-∆

2
+

(
(∆- + ∆+ − V+-)2 −W2

+-

)
(8.30)

where asymptotically we just recover the single particle light shifts (up to fourth order)

Ṽ∞+- ≡ Ṽ++(r → ∞) =
Ω2
-

4∆-
− Ω4

-

16∆3
-

+
Ω2
+

4∆+
− Ω4

+

16∆3
+

. (8.31)

The relative height of the potential becomes

(Ṽ+- − Ṽ∞+-)/Ṽ0 =
(1 + β)

2β2

(
Ω2
+

Ω-

)2 1
2 (1 + β)σ′(r/R2)6 − 1 + α2

2[
1
2 (1 + β)σ′(r/R2)6 − 1

]2 − α2
2

(8.32)
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Figure 8.7. We plot the relative height of Ṽ+- given by Eq. (8.32) (left panel) and of W̃+-
given by Eq. (8.36) (right panel) for α2

2 = 0.46 (n = 60), Ω- = Ω+ and σ′ = 1 for various laser
detuning fractions β.

with α2
2 = (W+-/c+-)2 [shown Fig. 8.2(b)], σ′ = sign(c+-)sign(∆-) and R6

2 = |c+-|/(2|∆-|). Due to
the resolvent the second term can be divergent for (∆- + ∆+ − V+-)2 − W2

+- = 0, when two potential
surfaces undergo an avoided crossing. This happens at

R′6div =
c+- ± w+-
∆- + ∆+

=
1 ± α2

1
2 (1 + β)

σ′R2. (8.33)

In order to avoid such divergences and to obtain step-like potentials we require Rdiv ∈ C. This can
only be fulfilled for −1 < α2 < 1 and β < −1. Figure 8.7 shows a typical example of Eq. (8.32) for
n = 60 where α2

2 = 0.46 and σ′ = 1. In this case the potential has no singularity (avoided crossing)
for β < −1. We note that for β = −1 the potential vanishes.

8.C.5 Coupling element W̃+-

For the coupling matrix element W̃+- adiabatic elimination up to fourth order in Ω/∆ yields

W̃+- = ei∆φ12
Ω2
-Ω

2
+

16∆2
-∆

2
+

(∆- + ∆+)2 W+-
(∆- + ∆+ − V+-)2 −W2

+-

(8.34)

where ∆φ12 = (k1 − k2)(r1 − r2) is the phase difference between the two lasers and relative position.
Asymptotically and at the origin (r = 0) the coupling matrix element vanishes

W̃+-(r → ∞) = 0, and W̃+-(r → 0) = 0. (8.35)

In dimensionless units W̃+- reads

W̃+-/Ṽ0 =

(
Ω+

Ω-

)2 1
2β2

α2
1
2 (1 + β)2 σ′(r/R2)6[

1
2 (1 + β)σ′(r/R2)6 − 1

]2 − α2
2

. (8.36)

Again, this matrix element is regular for −1 < α2 < 1 and β < −1. Figure 8.7 (right panel) shows a
typical example of Eq. (8.36) for n = 60 where α2

1 = 1.41 and σ = −1. We note that for β = −1 the
coupling matrix element vanishes. The coupling matrix element has a maximum at

R6
2,max = −

2
√

1 − α2
2

1 + β
R6

2 with

W̃+-(R2,max) = − Ṽ0

4β2

(
Ω+

Ω-

)2 (√
1 − α2

2 − 1
)
β + 1
α2

.

(8.37)
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Mar 2012 – Jul 2012: Mathematical Methods 1
Oct 2012 – Feb 2013: Theoretical Physics 1 (Classical Mechanics)
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Tutor, Institute for Theoretical Physics, University of Innsbruck:
Mar 2006 – Jul 2006: “Theoretische Physik 1 – Electrodynamics” (H. J. Briegel)
Oct 2006 – Feb 2007: “Theoretische Physik 2 – Quantum Theory” (P. Zoller)
Mar 2007 – Jul 2007: “Theoretische Physik 1 – Electrodynamics” (H. J. Briegel)
Oct 2007 – Feb 2008: “Theoretische Physik 2 – Quantum Theory” (P. Zoller)
Mar 2008 – Jul 2008: “Theoretische Physik 3 – Statistical Physics” (P. Zoller)
Oct 2008 – Feb 2009: “Theoretische Physik 2 – Quantum Theory” (H. Ritsch)
Mar 2009 – Jul 2009: “Theoretische Physik 2 – Quantum Theory” (H. J. Briegel)

Physics-related employment

2010 (Jan 1 – Apr 30) Wissenschaftlicher Mitarbeiter, Inst. for Theoretical Physics,
Univ. of Innsbruck

2010 (May 1) – 2012 (Apr 30) Forschungsassistent, Inst. for Theoretical Physics, Univ. of Innsbruck
2012 (May 1) – 2013 (Dec 31) Research Assistant, IQOQI, Innsbruck, Austrian Academy of Science
2014 (Jan 1) – 2014 (Jul 31) Forschungsassistent, Inst. for Theoretical Physics, Univ. of Innsbruck
2014 (Aug 1) — Research Assistant, IQOQI, Innsbruck, Austrian Academy of Science

Other Interests

• playing the guitar and piano

• International Yacht Master License for sailing and motor boats: The holder is entitled to com-
mand a sailing or motor yacht of maximum length 80 ft in navigation area 3 (offshore - 200
nautical miles from coast). Issued: Federal Ministry of Transport, Austrian Sailing Federation,
Vienna 27.10.2010 (S-006629)

• Short Range Certificate: international certificate that authorizes the holder to operate VHF
radiotelephone ship stations and VHF radio equipment for the Global Maritime Distress and
Safety System (GMDSS). Issued: Bundesministerium für Verkehr, Bau und Stadtentwicklung,
Federal Republic of Germany, Nürnberg, 03.03.2012 (Nr. 074126-F)

• Judo black belt (shodon), issued by the Austria Judo Federation (2001)
1993 – 2003: Member of the Judo club Reutte
1999 – 2003 Assistant Trainer of the Judo Club Reutte

A. W. Glätzle, Innsbruck, September 2014


