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Problem’s set #3
THEORETISCHE QUANTENOPTIK UND QUANTEN INFORMATION

2014S PS 705854
Oriol Romero-Isart

Due Friday 09.05.14

Atom interacting with quantum light

1. Quantization of an electromagnetic field mode within “macroscopic” classical boundaries:
optical cavity mode. In the first chapter of the theory lecture we described how the electro-
magnetic field is quantized in free space. In principle, this is all what is needed to describe the
interaction of the EM field with matter at the quantum level. However, in some situations it is
useful to treat macroscopic boundaries of matter in terms of classical boundary conditions (e.g
the mirrors in an optical cavity). In this exercise we will sketch how to quantize the EM field in
these situations.

(a) Using the Maxwell equations for the free field (zero currents and charges), show that in
the Coulomb gauge the potential vector A fulfills the equation

∇2A(r, t)− 1

c2
∂2A(r, t)

∂t2
= 0 (1)

Hint: Use the identity∇× (∇×F) = ∇(∇·F)−∇2F, and recall in the Coulomb gauge
∇ ·A = 0 and the scalar potential is the Coulomb potential created by the charges.

(b) Using the separation of variables

A(r, t) = α(t)f(r) + α∗(t)f∗(r) = 2Re [α(t)f(r)] , (2)

show that α(t) = e−iωtα(0) and (
∇2 + k2

)
f(r) = 0, (3)

where ω = kc. Equation (3) is the Helmholtz equation which allows us to obtain the mode
function f(r) .

(c) Show that the transvere electric field can be written as

E⊥(r, t) = −iωα(0)e−iωtf(r) + H.c. (4)

(d) Show that the electromagnetic Hamiltonian H = ε0
∫
d3r (|E⊥|2 + c2|B|2) /2 can be ex-

pressed as

H =
ε0
2

∫
d3r
(
|E⊥|2 + ω2|A|2

)
, (5)

Hint: Use: the identity∇ · (F×G) = G · (∇×F)−F · (∇×G) with G = ∇×A and
F = A, the identity ∇ × (∇ × F) = ∇(∇ · F) − ∇2F, the Coulomb gauge condition,
the fact that A fulfills the Helmholtz equation, and the divergence theorem (using the fact
that the surface integral vanishes of a consequence of the assumed boundary conditions of
A(r).
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(e) Show that the quantization

α(0)→
√

~
2ωε0

â, (6)

where [â, â†] = 1, leads to Ĥ = ~ω(â†â+ 1/2). Thus the operator describing the electric
field observable is given by

Ê⊥(r) = i

√
~ω
2ε0

f(r)â− H.c. (7)

(f) Now consider a one-dimensional cavity consisting of two mirrors of area A positioned
at z = 0 and x = L (this is a Fabry-Perot resonator). The boundary conditions are
E(z = 0) = E(z = L) = 0. Show that

fn,ε(z) = ~ε

√
2

V
sin(knz), (8)

where kn = nπ/L, V = AL, and~ε is the polarization vector (perpendicular to k) fulfilling
|~ε| = 1 are orthogonal (

∫
V
drfn(z)fm(z) = δnm) solutions of the Helmholtz equation (3).

Thus the transverse electric field operator can be written as

Ê⊥(z) =
∑
n

∑
~ε

i~ε

√
~ωn
V ε0

sin(knz)ânε − H.c., (9)

where ωn = knc. For a cavity of L = 1 cm, what is the value of the free spectral range
∆ω = ωn+1 − ωn? Note that a single mode can be individually addressed, as considered
in section 3.1 of the theory lecture.

2. Spontaneous emission of an atom in confined spaces. In the theory lecture we have obtained
by several methods that the spontaneous emission rate of a two-level isotropic atom in free
space is given by:

Γ0 =
|~deg|2ω3

eg

3~πε0c3
. (10)

In this exercise we want to compute the spontaneous emission of a two level atom in confined
spaces (e.g. in between two infinite parallel conducting planes). To do this, let us start consid-
ering a perfectly conducting box of lengths Lx, Ly, and Lz (with one corner at the origin).

(a) Show that under these conditions, the Helmholtz equation (3) has the following orthogonal
solutions

fk,ε(r) =

√
8

V

 εx cos(kxx) sin(kyy) sin(kzz)
εy sin(kxx) cos(kyy) sin(kzz)
εz sin(kxx) sin(kyy) cos(kzz)

 , (11)

where V = LxLyLz, kx = nxπ/Lx, ky = nyπ/Ly, kz = nzπ/Lz, and εi is the i-
component (i = x, y, z) of the polarization vector ~ε (which is orthogonal to k). Thus,
the transverse electric field operator is given by

Ê⊥(r) =
∑
k

∑
~ε

i

√
~ωk

2ε0
fk,ε(r)âkε − H.c.. (12)

(b) Considering that the two level atom is at r0 = (Lx/2, Ly/2, Lz/2), show that interaction
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Hamiltonian is given by

V̂ = ~
∑
k

∑
~ε

[gkε|e〉〈g|âkε + H.c.] , (13)

where

gkε = i
fk,ε(r) · ~deg

~

√
~ωk

2ε0
(14)

What approximations have been done to obtain this Hamiltonian and when are they valid?

(c) Using the resolvent operator we showed in Section 3.4.5 of the theory lecture that the
spontaneous emission is approximately given by

Γ ≈ 2π

~
∑
k

∑
~ε

∣∣∣〈g,~εk|V̂ |e, 0〉∣∣∣2 δ(~ωeg − ~ωk) (15)

(this is analogous to the Fermi’s golden rule). What approximation are done in order to
obtain this expression?

(d) Let us now consider two infinite planes (oriented in the x−y plane) separated by a distance
L� λeg/2, where λeg = 2πc/ωeg is the wavelength associated to the two-level transition.
First, discuss why the condition L � λeg/2 implies that the atom can only couple to the
nz = 0 mode, and thus we can just take kz = 0 and sum only over kx and ky. Note also
than then the possible polarization is fixed to be along the z axis.

(e) Show that for an isotropic atom situated at r0, one then arrives at

Γ2D ≈ Γ0
2(2π)2

LxLyL

c3

ω3
eg

∑
kx,ky

ωk sin2(kxLx/2) sin2(kyLy/2)δ(ωeg − ωk), (16)

where we used the expression of spontaneous emission rate in free space, Eq. (10).

(f) Being infinite planes, we can take the limit Lx = Ly → ∞ and convert the sum into an
integral using ∑

kx,ky

→ LxLy
(2π)2

∫
dkxdky, (17)

and approximate sin2(kxLx/2) sin2(kyLy/2) to its average value 1/4. Show that then

Γ2D ≈ Γ0
πc

ωegL
= Γ0

λeg
2L

. (18)

Is Γ2D larger or smaller than Γ0? Note that Γ2D ∝ ω2
eg.

3. Collapse and Revival in the Jaynes-Cummings model. Consider a two level system interact-
ing with a single electromagnetic mode. Its Hamiltonian in the rotating wave approximation
and assuming a real Rabi frequency is given by the Jaynes-Cummings Hamiltonian

Ĥ = −~∆|e〉〈e|+ Ω

2

(
âσ̂+ + â†σ̂−

)
. (19)

(a) Show that the Rabi oscillations for the state |g〉 ⊗ |n〉 are given by

Pn(t) ≡
∣∣∣〈e| ⊗ 〈n− 1|e−iĤt/~|g〉 ⊗ |n〉

∣∣∣2 =
1

2

Ω2
n

Ω2
n + ∆2

[
1− cos

(
t
√

Ω2
n + ∆2

)]
,

(20)
where Ωn =

√
nΩ.
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(b) Consider now that the initial state is given by |g〉⊗ |α〉 where |α〉 is a coherent state of the
electromagnetic mode. Show that the probability to measure the two level system in the
state |e〉 is given by

Pe(t) =
∞∑
n=1

pnPn(t), (21)

where

pn =
e−|α|

2|α|2n
n!

. (22)

(c) Considering ∆ = 0, make a plot of Pe(t) as a function of Ωt for different α. Observe the
collapse of the Rabi oscillations and the revival starting at roughly tRΩ ∼ 2π|α|. Note
that the larger |α| = n̄, the better is the collapse and revival observed.

4. A relation in complex analysis useful for quantum optics. In quantum optics, we often find
the following integral ∫ ∞

−∞

f(x)

x− adx, (23)

where f(x) is a continuous function.

(a) Assuming that f(z), for z ∈ C, fulfills |f(z)| → 0 as |z| → ∞ and is analytic in the real
axis, show that

lim
ε→0

∫ ∞
−∞

f(x)

x− a± iε
dx = P

∫ ∞
−∞

f(x)

x− adx∓ iπf(a), (24)

where

P
∫ ∞
−∞

f(x)

x− adx = lim
ε→0

[∫ a−ε

−∞

f(x)

x− adx+

∫ ∞
a+ε

f(x)

x− adx
]

(25)

is the Cauchy principal value of the improper integral. One typically writes these equali-
ties as

lim
ε→0

1

x− a± iε
= P 1

x− a ∓ iπδ(x− a), (26)

which make sense only when considered as integrands.

(b) Use the previous result to show that∫ ∞
0

dωf(ω)

∫ ∞
0

dte−i(ω−ω0)t = f(ω0)π − iP
∫ ∞
0

dω
f(ω)

ω − ω0

(27)

(we assume ω0 � 0) which appears very often in quantum optics. The imaginary term
containing the Cauchy principal value is typically related to level shifts. For instance, we
omitted (on purpose) this more careful integration which would lead to a Lamb shift in
the theory lecture (Sec. 3.2.) when discussing spontaneous emission with the Wigner-
Weisskopft approximation.

5. Adiabatic elimination in the Lambda scheme: Raman transitions. In a Lambda scheme
(recall problem 3 in Problem’s set # 2), the total Hamiltonian in the rotating frame and after
performing the rotating wave approximation can be written as H̃ = Ĥ0 + V̂ , with

Ĥ0 = ~∆1|g1〉〈g1|+ ~∆2|g2〉〈g2|, (28)

V̂ =
~Ω1

2
(|g1〉〈e|+ |e〉〈g1|) +

~Ω2

2
(|g2〉〈e|+ |e〉〈g2|) . (29)
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We have defined ∆j = ωj − ωgj , and the Rabi frequencies which are assumed to be real
Ωj = −2~dej · ~εjEj/~ (the laser phases are chosen appropriately). Assuming the drivings are

|g1i |g2i

|ei

!1
!2

!g1
!g2

�1 �2

Figure 1: Lambda scheme.

off-resonant, we want to adiabatically eliminate the level |e〉, namely, we want to derive an
effective Hamiltonian for the levels {|g1〉, |g2〉}.

(a) Using the Schrieffer-Wolf transformation which is defined by a unitary operator Û =
exp[iĜ] with Ĝ being an Hermitian block-off-diagonal operator. We want to obtain the
effective Hamiltonian in second order perturbation theory in V̂ . Thus, it is sufficient to
obtain Ĝ in first order in V̂ . Show that this is given by:

Ĝ =
iΩ1

2∆1

(|g1〉〈e| − |e〉〈g1|) +
iΩ2

2∆2

(|g2〉〈e| − |e〉〈g2|) +O
(
V 2
)

(30)

(b) Using the previous result, show that the effective Hamiltonian Ĥeff of the subspace {|g1〉, |g2〉}
is given by

Ĥeff = ~∆̃1|g1〉〈g1|+ ~∆̃2|g2〉〈g2|+ ~g (|g1〉〈g2|+ |g2〉〈g1|) +O
(
V 3
)
, (31)

where the level shifts and the induced coupling strength are given by

∆̃1(2) = ∆1(2) +
Ω2

1(2)

4∆1(2)

,

g =
Ω1Ω2

8

(
1

∆1

+
1

∆2

)
.

(32)

Note that by adiabatically eliminating the excited state, now the two ground states are
effectively coupled. Indeed, this Hamiltonian looks exactly the same as the one obtained
by a two level atom interacting with a nearly-resonant “classical” field. The transitions
between the levels |g1〉 and |g2〉 induced by this effective coupling (via the excited state)
are called Raman transitions.
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