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Abstract

Quantum physics has transitioned with great success from research on fundamental effects
to harvesting technological applications that influence our everyday life. Stimulated emission
in atoms allowed the development of laser systems, quantum mechanical descriptions explain
tunneling effects in transistors and other semiconducting devices, and the utilization of the
atomic spin enabled the development of novel medical devices via magnetic resonance imaging
(MRI). New technologies are trying to improve classical systems with the help of quantum
phenomena such as quantum entanglement, quantum superposition or quantum tunneling.
These technologies include quantum communication, quantum sensing and quantum comput-
ing. In order to realize these new applications it is necessary to achieve coherent control
over individual quantum states. This demands the ability to prepare, manipulate and read
out the state of the encoded quantum information. Many platforms are trying to realize the
interaction between matter and light by interfacing various emitters and electromagnetic en-
vironments. These include trapped ions, ultracold atoms or molecules, single spins in silicon,
quantum dots, nitrogen-vacancy centers in diamond, photons, and superconducting quantum
circuits [1].

Quantum electrodynamics (QED) is the theoretical description of the interaction between
matter and light at the level of single excitations and thus the basis for all applications
using light-matter interfaces. For a long time it has been proven difficult to observe QED
phenomena in fundamental research. The main problem is the weak interaction between the
atomic emitter and the three dimensional mode environment of open space. Cavity QED
confines light inside a closed volume, which can be used to enhance the interaction between
the atom and the light field and enabled the exploration of many QED effects. Circuit
QED [2] adapted this approach by using superconducting qubits, serving as artificial atoms
and microwave resonators, replacing optical cavities.

One of the key ingredients for new quantum technological applications, like quantum comput-
ing and quantum information processing is strong light-matter interaction. Hence, most state
of the art superconducting quantum information systems use qubits that are embedded in a
resonator or cavity to enhance the interaction. Commonly, the strong-coupling limit is de-
fined as the limit where the desired qubit coupling to a specific channel exceeds the coupling
to all dissipative channels [3]. Superconducting qubit-cavity systems protect the quantum
information by designing the circuit such that the frequencies of the qubit and cavity are
far detuned from each other. In this so-called dispersive regime, the cavity acts as a filter
for noise around the qubit frequency that travels through the coaxial lines. At the same
time the strong-coupling between the cavity and qubit allows for a quantum non-demolition
readout of the qubit state due to the dispersive cavity shift that depends on the state of the
qubit. The qubit remains accessible for coherent manipulation by applying pulses through
weakly coupled control lines. The combination of these fundamental requirements led to the
rapid development of circuit QED as one of the leading platforms for realizing a quantum
computer.
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Waveguide QED combines open space and enhanced interaction by allowing photon propa-
gation in one dimension and confining the other two dimensions. This allows studying quan-
tum effects in an environment that is closer to the original QED description in free space.
Waveguide quantum electrodynamics has become a popular platform to study light-matter
interactions by coupling localized quantum emitters to one dimensional photonic channels.
There are various platforms, that can be assessed by the ability to deterministically and ef-
ficiently couple individual quantum emitters to the waveguide. Due to their small dipole
moment, natural atoms can only be coupled very weakly to propagating photons, at best
achieving that 50% of the emitted radiation is coupled into the waveguide [4]. Artificial
atoms, like quantum dots can be coupled very efficiently, such that over 99% of the emission
is guided into the waveguide modes [5]. They have high engineering potential [6] but suffer
from inhomogeneous broadening which makes it very difficult to have more than two resonant
emitters [7]. Superconducting qubits are usually realized by integrating a nonlinear Joseph-
son junction [8] into an electrical circuit to obtain an anharmonic oscillator that plays the
role of an artificial multilevel atom. Superconducting qubits and microwave waveguides can
achieve coupling efficiencies of 99.9% [9], the qubits can be reliably fabricated as arrays [10],
and they can be designed so that their resonance frequency can be controlled locally by mag-
netic flux [11]. The engineering capabilities of superconducting qubits led to the observation
of a broad range of quantum optical phenomena such as the Mollow triplet [12, 13], ultra
strong coupling [14], generation of non-classical photonic states [15, 16], qubit-photon bound
states [17], topological physics [18] as well as collective effects [9, 19]. Despite the success of
superconducting waveguide quantum electrodynamics, one of many crucial questions remains
unanswered: How valid is the two-level approximation, especially for describing collective
states beyond the single excitation manifold [1]?

Collective states appear in waveguide QED as a result of waveguide-mediated interactions [20]
and interference effects in an ensemble of emitters [4]. The relative phase between individual
emitters determines whether the collective state obtains a sub- or superradiant decay rate, i.e.
whether it becomes a dark or a bright state. Collective bright states have been measured in
various waveguide QED systems [7, 19, 21–23], whereas dark states have only been observed
spectroscopically in superconducting waveguide QED [10, 19]. More recently a multi-qubit
dark state has been used to build a microwave cavity [9], but full coherent control of the
dark state has not been achieved. The difficulty arises from the main property of the dark
state - it decouples from the electromagnetic environment of the waveguide. Full control
over the dark state provides the possibility to realize a quantum computation and simulation
platform using decoherence-free subspaces [24, 25]. For quantum computation purposes the
multi-level nature of collective systems requires accurate knowledge of the energy and decay
characteristics beyond the single excitation states to avoid detrimental leakage errors out
from the computational subspace. Coherent control over the dark states enables the usage
as a qubit in waveguide QED. Moreover, the long-lived nature offers a starting point for an
accurate characterization of the spectrum and the decay properties of such collective systems,
especially for the higher excitation manifolds.

In the scope of this thesis, we investigated the interaction between four superconducting trans-
mon qubits that are coupled to a common waveguide mode environment. The hybridization
of the transmon yields collective states that strongly depend on the coupling parameters and
transmon anharmonicities. The pairwise arrangement gives rise to a direct coupling that is
caused by the capacitance between the metallic transmon pads. Each pair obtains a local dark
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state in the first excitation manifold, that is long-lived and can serve as a resource for coherence
in an open quantum system, such as the waveguide environment. The waveguide-mediated
interaction depends on the effective separation and causes coherent exchange coupling or col-
lective dissipation. In this setting we focus on the collective behavior, thus tune the qubits
to a frequency that corresponds to a distance of half a wavelength [20]. The emerging dark
state is non-local and shared between the distant qubits. Then, the phase of a collective drive
must match the phase of the hybridized transitions in order to drive them. We show that two
local ports at the qubit pairs can be used to match the drive phase to the symmetry of the
bright and dark states, and show that the dark state serves as a starting point for studying
the multi-level spectrum of the coupled transmons.

The doctoral thesis is organized as follows: The introductory chapter contains the basic
concepts of circuit QED and a description of cavity and waveguide QED. The second chapter
summarizes the waveguide QED theory, which is necessary to understand the experimental
results. Many results can already be reproduced by QuTiP [26] simulations. But an accurate
prediction of the energy spectrum, the decay rates of the states, and the symmetries with
respect to a given mode environment are obtained by numerical simulations of the pairwise
transmon setup. In the third chapter, a practical approach to the design and development of a
waveguide QED setup is presented and the measurement procedure is briefly discussed. In the
fourth chapter, the results of the conducted experiments are presented and discussed, while
in the conclusion, the significance of the results in a broader sense is explained to conclude
the thesis.

Kurzfassung

Die Quantenphysik ist mit großem Erfolg von der Erforschung grundlegender Effekte zu tech-
nologischen Anwendungen übergegangen, die unser tägliches Leben beeinflussen. Die stim-
ulierte Emission in Atomen ermöglichte die Entwicklung von Lasersystemen, Quantenthe-
orien werden zur Beschreibung von Transistoren und anderen Halbleiterbauelementen ver-
wendet, und die Nutzung des atomaren Spins ermöglichte die Beobachtung des Inneren von
Festkörpern mittels Magnetresonanztomographie (MRT). Neue Technologien versuchen, klas-
sische Systeme mit Hilfe von Quantenphänomenen wie Quantenverschränkung, Quantenüber-
lagerung oder Quantentunnelung zu verbessern. Zu diesen Technologien gehören Quan-
tenkommunikation, Quantensensorik und Quantencomputing. Um diese neuen Anwendun-
gen zu realisieren, ist es notwendig kohärente Kontrolle über einzelne Quantenzustände zu
erreichen. Dies bedeutet, dass es möglich sein muss, den Zustand der kodierten Quantenin-
formation in den Qubits zu initalisieren, zu manipulieren und auszulesen. Viele Plattformen
versuchen, die Quantenkontrolle über die Wechselwirkung zwischen Materie und Licht zu
realisieren. Dazu gehören Ionenfallen, ultrakalte Atome oder Moleküle, einzelne Spins in
Silizium, Quantenpunkte, Stickstoff-Vakanzzentren in Diamant oder einzelne Photonen sowie
auch supraleitende Quantenschaltkreise [1].

Die Quantenelektrodynamik (QED) ist die theoretische Beschreibung der Wechselwirkung
zwischen Materie und Licht auf der Ebene einzelner Anregungen und damit die Grundlage
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für alle Anwendungen an der Schnittstelle zwischen Licht und Materie. Lange Zeit hat es
sich als schwierig erwiesen, QED-Phänomene in der Grundlagenforschung zu beobachten.
Das Hauptproblem dabei ist die schwache Wechselwirkung zwischen dem atomaren Emitter
und der dreidimensionalen Modenumgebung des offenen Raums. Bei der Hohlraum-QED
wird das Licht in einem geschlossenen Volumen eingeschlossen, wodurch die Wechselwirkung
zwischen dem Atom und dem Lichtfeld verstärkt werden kann und die Erforschung vieler
QED-Effekte ermöglicht wird. Hohlraum-QED mit elektrischen Schaltkreisen [2] adaptierte
diesen Ansatz, indem supraleitende Qubits als künstliche Atome verwendet werden, sowie
Mikrowellenresonatoren, die die optischen Spiegel ersetzen.

Eine der wichtigsten Voraussetzungen für neue Anwendungen der Quantentechnologie, wie
Quantencomputer und Quanteninformationsverarbeitung, ist eine starke Licht-Materie Wech-
selwirkung. Daher werden in den meisten modernen supraleitenden Quanteninformation-
ssystemen Qubits verwendet, die in einen Resonator oder Hohlraum eingebettet sind, um
die Wechselwirkung zu verstärken. Im Allgemeinen wird die Grenze der starken Kopplung
definiert, bei der die gewünschte Qubit-Kopplung an einen bestimmten Kanal die Kopplung
an alle Verlust-Kanäle übersteigt [3]. Supraleitende Qubit-Resonator-Systeme schützen die
Quanteninformation, indem sie die Resonanzfrequenzen von Qubit und Resonator weit voneinan-
der trennen. In diesem so genannten dispersiven Bereich wirkt der Resonator als Filter für
Rauschsignale in der Nähe der Qubit-Frequenz, das durch die Koaxialleitungen übertragen
wird. Gleichzeitig ermöglicht die starke Kopplung zwischen dem Resonator und dem Qubit
ein Auslesen des Qubit-Zustands ohne das dieser zerstört wird mit Hilfe der Frequenzänderung
des Resonators, die vom Zustand des Qubits abhängt. Das Qubit bleibt für kohärente Ma-
nipulationen zugänglich, indem Impulse über schwach gekoppelte Steuerleitungen gesendet
werden. Die Kombination dieser grundlegenden Möglichkeiten der Isolation und Kontrolle
führte zur raschen Entwicklung der Schaltkreis-QED als eine der führenden Plattformen für
die Realisierung eines Quantencomputers.

Die Wellenleiter-QED kombiniert den offenen Raum mit der verstärkten Kopplung, indem
sie die Ausbreitung von Photonen in einer Dimension erlaubt und die beiden anderen ein-
schränkt. Dies ermöglicht die Untersuchung von Quanteneffekten in einer Umgebung, die der
ursprünglichen QED-Beschreibung näher kommt. Die Wellenleiter-Quantenelektrodynamik
ist zu einer beliebten Plattform für die Untersuchung von Licht-Materie Wechselwirkungen
geworden, indem lokalisierte Quantenemitter an eindimensionale photonische Kanäle gekop-
pelt werden. Es gibt verschiedene Plattformen, die nach ihrer Fähigkeit bewertet werden
können, einzelne Quantenemitter deterministisch und effizient an den Wellenleiter zu kop-
peln. Natürliche Atome können aufgrund ihres geringen Dipolmoments nur sehr schwach
an sich ausbreitende Photonen gekoppelt werden und erreichen bestenfalls, dass 50% der
emittierten Strahlung in den Wellenleiter eingekoppelt wird [4]. Künstliche Atome, wie z.B.
Quantenpunkte, können sehr effizient gekoppelt werden, so dass über 99% der Emission in
den Wellenleiter eingekoppelt werden [5] und haben eine hohe technische Variabilität [6], lei-
den aber unter inhomogenen spektralen Linienverbreiterungen, was es sehr schwierig macht,
mehr als zwei resonante Emitter zu haben [7]. Supraleitende Qubits werden in der Regel
durch einen nichtlinearen Josephson-Kontakt in einem elektrischen Schaltkreis realisiert, um
einen anharmonischen Oszillator zu erhalten, der die Rolle eines künstlichen Atoms übern-
immt. Supraleitende Qubits können Kopplungseffizienzen von 99,9% erreichen [9], sie können
zuverlässig als Kollektiv von Qubits hergestellt werden [10], und sie können so konstruiert wer-
den, dass ihre Resonanzfrequenz lokal durch magnetischen Fluss gesteuert werden kann [11].
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Die technischen Möglichkeiten supraleitender Qubits führten zur Beobachtung eines breiten
Spektrums quantenoptischer Phänomene wie dem Mollow-Triplett [12, 13], ultrastarker Kop-
plung [14], Erzeugung von nicht-klassischen photonischen Zuständen [15, 16], Qubit-Photon
gebundene Zustände [17], topologische Physik [18] sowie kollektive Effekte [9, 19]. Trotz des
Erfolgs der Quantenelektrodynamik mit supraleitenden Wellenleitern bleibt eine von vielen
wichtigen Fragen unbeantwortet: Wie gültig ist die Zwei-Niveau-Näherung, insbesondere für
die Beschreibung kollektiver Zustände jenseits der Betrachtung einzelner Anregungen [1]?

Kollektive Zustände treten in der Wellenleiter-QED auf Grunde von Wechselwirkungen und
Interferenzeffekten in einem Ensemble von Emittern auf [4]. Die relative Phase zwischen den
einzelnen Emittern bestimmt, ob der kollektive Zustand eine sub- oder superradiante Zerfall-
srate erhält, d.h. ob er zu einem dunklen oder hellen Zustand wird. Kollektive helle Zustände
wurden in verschiedenen Wellenleiter-QED Systemen gemessen [7, 19, 21–23], während dunkle
Zustände nur in supraleitenden Wellenleiter-QED spektroskopisch beobachtet wurden [10, 19].
Vor kurzem wurde ein dunkler Multi-Qubit-Zustand zum Erzeugen eines Mikrowellenres-
onators verwendet [9], aber eine vollständige kohärente Kontrolle des dunklen Zustands wurde
nicht erreicht. Die Schwierigkeit ergibt sich aus der Haupteigenschaft des dunklen Zustands -
er entkoppelt von der elektromagnetischen Umgebung des Wellenleiters. Die vollständige Kon-
trolle bietet die Möglichkeit, eine Quantencomputing- und Quantensimulations-Plattform zu
realisieren, die dekohärenzfreie Unterräume verwendet [24, 25]. Quantencomputing erfordert
die genaue Kenntnis der Energie- und Zerfallscharakteristiken der kollektiven Vielzustandssys-
teme jenseits der einzelnen Anregungen, um versehentliches Verlassen des Berechnungsunter-
raumes zu vermeiden. Die kohärente Kontrolle über den dunklen Zustand ermöglicht die
Erforschung dieser höheren Anregungszustände und die Charakterisierung der Eigenschaften
von Vielkörperzuständen.

Im Rahmen dieser Arbeit untersuche ich die Wechselwirkung zwischen vier supraleitenden
Transmon-Qubits, die an eine gemeinsame Wellenleiter-Modenumgebung gekoppelt sind. Die
Hybridisierung der Transmons führt zu kollektiven Zuständen, die stark von den Kopplungspa-
rametern und Transmon-Anharmonizitäten abhängen. Die paarweise Anordnung führt zu
einer direkten Kopplung, die durch die Kapazität zwischen den metallischen Transmon-Pads
verursacht wird. Jedes Paar erhält einen lokalen dunklen Zustand im Zustandsraum der mit-
tels einer Anregung erreicht werden kann. Der Dunkelzustand ist langlebig und kann als
Ressource für die Kohärenz in einem offenen Quantensystem, wie der Wellenleiterumgebung,
dienen. Die Wechselwirkung, die vom Wellenleiter vermittelt wird, hängt von der effektiven
Distanz ab und verursacht kohärente Austauschkopplung oder kollektive Dissipation. In dieser
Konfiguration konzentrieren wir uns auf das kollektive Verhalten und stimmen die Qubits auf
eine Frequenz ab, die einem Abstand von einer halben Wellenlänge entspricht. Der entste-
hende dunkle Zustand ist nichtlokal und wird von den entfernten Qubits geteilt. Die Phase
eines Antriebs muss mit der Phase der Übergänge übereinstimmen, die er ansteuern soll.
Wir zeigen, dass zwei lokale Ports an den Qubit-Paaren verwendet werden können, um die
Antriebsphase an die Symmetrie der hellen und dunklen Zustände anzupassen, und zeigen,
dass der dunkle Zustand als Ausgangspunkt für die Erforschung der höheren Energieniveaus
des gekoppelten Transmon-Systems dient.

Die Dissertation ist wie folgt gegliedert: Die Einleitung enthält die grundlegenden Konzepte
der Schaltkreis-Quantenelektrodynamik und eine Beschreibung der Hohlraum- undWellenleiter-
Quantenelektrodynamik. Das zweite Kapitel fasst die Theorie für Wellenleiter zusammen,
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die notwendig ist, um die experimentellen Ergebnisse zu verstehen. Viele Ergebnisse kön-
nen bereits durch QuTiP [26]-Simulationen reproduziert werden. Eine genaue Vorhersage
des Energiespektrums, der Zerfallsraten der Zustände und der Symmetrien in Bezug auf
eine gegebene Modenumgebung wird jedoch durch numerische Simulationen des paarweisen
Transmon-Aufbaus erreicht. Im dritten Kapitel wird ein praktischer Ansatz für den En-
twurf und die Entwicklung eines Wellenleiter-QED-Aufbaus vorgestellt und das Messverfahren
kurz diskutiert. Im vierten Kapitel werden die Ergebnisse der durchgeführten Experimente
vorgestellt und diskutiert, während im Schlusswort die Bedeutung der Ergebnisse im weiteren
Sinne erläutert wird, um die Arbeit abzuschließen.
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CHAPTER 1
Superconducting Quantum Circuits

More than a hundred years after the discovery of superconductivity in 1911 by Heike Kamer-
lingh Onnes [27], superconducting circuits have evolved into a tool to study the interactions
between microwaves and electrical circuit elements. More recently, superconducting circuits
have been developed into one of the most promising technologies for building a quantum com-
puter. One of the building blocks in circuit quantum electrodynamics is the LC harmonic
oscillator, which is realized by arranging an inductor and a capacitor in a parallel configura-
tion. There are many physical realizations of such a resonant circuit, which has become one
of the workhorses in quantum information technology with superconducting devices. There-
fore, we quantize the circuit in the first section in order to describe the electrical circuit in
the quantum regime. However, the harmonic nature prevents the addressing of individual
transitions, which is necessary to define a qubit. The Josephson junction makes it possible
to transform a harmonic oscillator into an anharmonic system, allowing to selectively address
individual transitions. One of the most common superconducting qubits and the heart of our
experiments is the transmon qubit [11]. In the field of circuit quantum electrodynamics (QED)
the transmon is then usually coupled to a harmonic oscillator to properly isolate it from the
environment but keeping an access channel for coherent control. The last two sections focus
on the main differences between coupling a qubit to a resonant circuit or an environment that
has a continuous mode spectrum like a waveguide.

1.1 The Quantum Harmonic Oscillator

An inductor L and a capacitor C form a harmonic oscillator where the stored energy is al-
ternating between the magnetic field of the inductive element and the electrical field of the
capacitor. The lumped-element representation of the harmonic oscillator circuit model, re-
alized by a parallel configuration of an inductance and a capacitance is shown in Fig. 1.1a.
They are most commonly realized by the physical implementations shown in Fig. 1.1b and
c, where the resonant circuit can either be integrated on-chip or realized by a metallic box.
On resonance, the electric and the magnetic field oscillate at the natural resonance frequency
ωr = 1/

√
LC. The discrete resonant modes of the harmonic oscillator simplify the description

of the electromagnetic environment, such that it often serves as an example how to quantize
an electrical circuit. The LC circuit model can be used to describe electrical circuits with
quantum operators by deriving the Hamiltonian according to Ref. [29]. In the node represen-
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2 1.1 The Quantum Harmonic Oscillator

a

C L

cb
10 mmΦ,Q

ib(t)

vb(t)

Figure 1.1: Microwave harmonic oscillator. a The schematic shows a parallel arrangement
of a capacitor C and an inductor L. Drawing the circuit diagram of a harmonic oscillator
unifies the descriptions of the physical implementations. b A planar λ/2 resonator is realized
by interrupting the transmission line at two points. The sudden impedance change causes the
signal to reflect at the ends and provides the boundary conditions for a standing wave. The
length of the middle strip determines the resonance frequency. c Another way to create an
harmonic oscillator is to use the resonant mode of a 3D cavity. The fields in 3D cavities are
in the enclosed volume of a conductive material where the inner dimensions determine the
resonance frequencies. Superconducting materials and geometric optimizations led to single
photon lifetimes up to 10 ms [28].

tation, the generalized node flux Φ and node charge Q are given by the branch voltage vb and
branch current ib through a circuit element

Φb(t) =
∫ t

−∞
vb
(
t′
)
dt′,

Qb(t) =
∫ t

−∞
ib
(
t′
)
dt′.

(1.1)

The energy of the linear capacitive and inductive elements is given by

EC = 1
2C (Q−Qoffset)2

EL = 1
2L(Φ− Φoffset)2.

(1.2)

Setting Qoffset and Φoffset to zero at the ground node and promoting the classical variables to
quantum operators Φ −→ Φ̂, Q −→ Q̂ and H −→ Ĥ allows us to write down the Hamiltonian
of the LC harmonic oscillator

H = Q̂2

2C + Φ̂2

2L.
(1.3)

The node charge becomes the conjugate variable of the node flux, similar to the momentum
and position coordinate of the mechanical analogue. This means that we can relate them by a
Fourier transformation and they have to obey the Heisenberg uncertainty principle. Therefore,
the two operators also obey the canonical commutation relation[

Φ̂, Q̂
]

= i~ (1.4)

To find the energy eigenstates of the circuit the conjugate variables are expressed with the
creation â† and annihilation operators â

Φ̂ = ΦZPF
(
â+ â†

)
, Q̂ = −iQZPF

(
â− â†

)
, (1.5)
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with the zero-point fluctuations of the flux and charge at the node

ΦZPF =
√

~Z0
2 , QZPF =

√
~

2Z0
, (1.6)

where the characteristic impedance of the circuit is Z0 =
√
L/C. Changing the characteristic

impedance of the circuit will decrease the vacuum fluctuations of one variable, whereas the
other has to increase. For quantum circuits, the zero point fluctuation can reach macroscopic
values and are a common tuning parameter for designing circuits [29]. The electromagnetic
fields are created by the current flowing through the inductor and the charge on the capacitor
plates. The creation and annihilation operators are closely related to the field amplitude
operator for a single mode and obey the commutation relation[

â, â†
]

= 1. (1.7)

Rewriting the Hamiltonian for the LC oscillator in Eq. (1.3), using the field operators yields
the quantum harmonic oscillator Hamiltonian

Ĥ = ~ωr
(
â†â+ 1/2

)
, (1.8)

where the number operator n̂ = â†â has a discrete eigenbasis (Fock basis) counting the number
of elementary excitations in the circuit. They correspond to the number of photons in the
electromagnetic field that reside in the oscillator. Neighboring energy levels are equidistantly
separated by the resonance frequency ωr of the circuit.

1.2 The Josephson Junction

200 nm

=
|Ψ1|eiφ1

|Ψ2|eiφ2

LJCJ CJ, LJ

Φ,Qa b

Figure 1.2: Josephson junction. a A capacitance and a non-linear inductive element (cross)
represent the Josephson junction in the circuit model. As there is always a capacitance aris-
ing from the physical separation of two superconductors the inductance and capacitance are
represented by one circuit element. b On the scanning electron microscope (SEM) picture,
the blue colored superconductor is separated from the orange superconductor by a thin insu-
lating barrier at their intersection. In this case, they are both aluminum wires separated by
aluminum-oxide. The rectangular overlap effectively forms a capacitance between both met-
als and the finite Cooper pair tunneling probability results in a non-linear inductance, both
captured in the circuit representation in a.

The key element for quantum information processing with microwave circuits is the Joseph-
son junction, a non-linear and non-dissipative circuit element that arguably has been the
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workhorse for circuit QED experiments over the last two decades [30]. Conventional capaci-
tors and inductors are purely linear and thus cannot provide non-linearity to the circuit, while
conventional non-linear elements like CMOS transistors based on semiconducting materials
are dissipative. However, there are efforts to utilize transistors in low loss circuits [31].

A realization of a Josephson junction, schematically shown in Fig. 1.2a, is depicted in Fig. 1.2b,
where two strips of aluminum (orange and blue) are separated by a thin layer of aluminum-
oxide. When cooled down below the critical temperature of aluminum, the superconducting
wires and the tunnel barrier form a very low loss anharmonic oscillator with the capacitance
arising from the geometry of the metallic wires and the non-linear inductance arising from the
tunneling current through the oxide barrier. To form a qubit, the circuit is usually extended
with additional linear elements.

The Josephson Equations

The dissipationless current that flows through a superconductor is called supercurrent. It can
tunnel between two superconductors that are separated by a weak link, first described by
Brian D. Josephson in 1962 [8]. The weak link that is used throughout this thesis consists
of a superconductor-insulator-superconductor (S-I-S) junction, similar to the one depicted
in Fig. 1.2. As the superconductors are spatially separated, the individual condensates might
have different macroscopic wavefunctions with a characteristic complex phase and ampli-
tude [32]. The difference in the phase of the two superconductors ϕ = ϕ2 − ϕ1 controls the
tunneling of cooper pairs through the insulating layer, allowing the apparition of a supercur-
rent I. The critical current Ic is a parameter that depends on the utilized materials and the
geometry of the Josephson junction. The critical current corresponds to the maximum abso-
lute current, up to which Cooper pairs can tunnel from one side of the junction to the other
while preserving superconductivity. For stronger currents the Josephson junction abruptly
becomes normal conducting and behaves like an ohmic resistor. The relation between the
current I and the phase difference ϕ between the two superconductors is the first Josephson
equation

I = Ic sin(ϕ). (1.9)

The second Josephson equation describes the time evolution of the phase difference which
results in a voltage drop V across the Josephson junction

∂ϕ

∂t
= 2e

~
V = 2π

Φ0
V, (1.10)

where we introduced the reduced Planck constant ~ and the magnetic flux quantum Φ0 = h/2e
with the Planck constant h and the electron charge e. The inductance L can be calculated
by taking the time derivative of the first Josephson equation and combining both Josephson
equations

∂I

∂ϕ
= Ic cosϕ,

∂I

∂t
= Ic cosϕ · 2π

Φ0
V.

(1.11)
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In analogy to Faraday’s law of induction where the change of a current induces a voltage, we
can use the relation V = Lİ to rewrite the inductance as

L(ϕ) = − Φ0
2πIc cosϕ = LJ

cosϕ. (1.12)

The Josephson inductance LJ = Φ0
2πIc and energy EJ = Φ0

2π Ic are characteristic properties that
can already be estimated from room temperature measurements by relating the resistance
measurement to the critical current, see Sec. 3.3.1. The equation can be rewritten with the
definition of the branch flux in Eq. (1.1), such that with ϕ(t) =

∫
dt′V (t′)2π/Φ0 = 2πΦ(t)

Φ0
the

inductance becomes
L(Φ) = LJ

cos (2πΦ/Φ0) . (1.13)

Hence, the Josephson junction enables the construction of non-linear circuit elements by
introducing a cosine dependence in the inductance. To distinguish the Josephson inductance
from the linear inductance it is usually represented by a cross in the circuit diagram, shown
in Fig. 1.2. In addition to the inductive part, the Hamiltonian of a Josephson junction must
also contain the linear capacitive term CJ arising from the physical proximity of the metallic
electrodes. The inductive energy that is stored in a Josephson junction can be written as [33]

E(Φ) = −EJ cos Φ2π
Φ0

. (1.14)

Using the definition of the charging energy EC = e2

2CJ in Eq. (1.2), the normalized charge
operator N̂ = Q̂

2e and the phase operator ϕ̂ = Φ̂ 2π
Φ0

, the Hamiltonian of the Josephson junction
reads

Ĥ = 4ECN̂2 − EJ cos ϕ̂. (1.15)

From this Hamiltonian we can see that the energy spectrum of the Josephson junction is
not harmonic, but will have corrections when expanding the cosine term. For small phase
fluctuations across the junction the quadratic term ϕ2 governs the linear behavior whereas
the quartic term ϕ4 deforms the parabolic shape of the energy potential. The Josephson
junction is a dissipationless inductor and provides enough non-linearity, that causes a non-
equidistant spacing of the energy levels of an otherwise harmonic oscillator. It enables the
design of various qubit realizations by choosing the corresponding inductance and capacitance
parameters, as well as the amount of non-linearity.

1.3 The Transmon Qubit

As seen in the last chapter, when the linear inductor of a harmonic LC-oscillator is replaced
with a Josephson junction, the energy spectrum is changed. The cosine term of the inductive
energy that arises from the tunneling probability of the Cooper pairs through the insulating
oxide barrier changes the level spacing such that the transition frequencies between the dif-
ferent states are not equidistantly spaced. If the transitions are resolved, meaning they have
sufficiently narrow linewidths, then they are individually distinguishable. The nonlinear engi-
neering capabilities offered by the Josephson element, along with the ability to design low-loss
circuits, are being used to develop various types of superconducting artificial atoms [34]. The
anharmonic potential allows the addressing of two energy levels from the multi-level system
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Figure 1.3: The transmon qubit. a Optical image of a 3D transmon, used in rectangular
cavities and waveguides. The large metallic pads are used to couple strongly to the elec-
tromagnetic field of the environment and to provide a shunt capacitance CS , protecting the
transmon against charge noise. Two Josephson junctions, indicated by the red crosses, provide
the non-linearity, while the loop geometry realizes a SQUID, enabling a the possibility to tune
the resonance frequency of the transmon via an external magnetic field. b The circuit diagram
of the quantum harmonic oscillator (purple) is slightly modified for the transmon (blue) by
replacing the linear inductor with a Josephson junction. c The energy potential and level
spacing differ because of the non-linear Josephson inductance in the transmon Hamiltonian.
Expanding the cosine term for small phase differences results in a quadratic term ϕ̂2 that
would give the parabolic shape of the harmonic oscillator. The quartic correction ϕ̂4 widens
the quantum harmonic oscillator potential and splits the energy levels to have non-equidistant
spacing. For well resolved spectral lines this means that individual levels can independently
be populated.

to form a qubit, where usually the ground and first excited state are used as computational
basis states. Shunting the Josephson junction with a capacitor CS , like the metallic pads
in Fig. 1.3a, results in a total capacitance CΣ = CJ + CS . By taking into account offset
charges Ng = Qg

2e , the quantized Hamiltonian can be written analogously to the Josephson
junction as

Ĥ =(Q̂−Qg)2

2CΣ
− EJ cos (2πΦ̂/Φ0)

=4EC(N̂ −Ng)2 − EJ cos ϕ̂.

(1.16)

The most commonly used superconducting qubit is the transmon [11] where the circuit ca-
pacitance is increased such that the Josephson energy dominates over the charging energy
EJ/EC � 1. This has the effect that offset gate charges ng have negligible impact on the
transition frequency, that can be caused by charge fluctuations in the circuit [11] and ulti-
mately lead to dephasing. The drawback for increasing the coherence properties this way
is the reduction of the anharmonicity. The anharmonicity α = E12 − E01 is defined as the
energy difference between the fundamental transition |0〉-|1〉 and the next higher transition
|1〉-|2〉. If the anharmonicity gets too small, leakage into higher states becomes a prob-
lem when trying to control the transition from the ground into the first excited state with
fast pulses. Usually the transmon is operated in a regime where EJ/EC ≈ 40 − 100 and
α/h = −EC/h ≈ 100 − 400 MHz, such that small charge fluctuations do not play a role
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and control can still be performed reasonably fast compared to the transmon coherence time.
Typical pulse lengths for qubit control are on the order of tens of nanoseconds, while the
transmon coherence time can reach values exceeding 100µs. Turning back to the Hamiltonian
and considering the fact that the phase fluctuations across the junction are small, as well as
neglecting constant offsets, we can write down the expansion of the cosine term and truncate
the series at the quartic exponent

Ĥ ≈ 4ECN̂2 + EJ
2! ϕ̂

2 − EJ
4! ϕ̂

4. (1.17)

Following the same procedure as for the harmonic oscillator in Sec. 1.1, introducing bosonic
creation and annihilation operators b̂†, b̂ allows then to express the phase and charge operators
as

ϕ̂ =
(2EC
EJ

)1/4 (
b̂† + b̂

)
,

N̂ = i

2

(
EJ

2EC

)1/4 (
b̂† − b̂

)
.

(1.18)

This representation illustrates nicely, that fluctuations of the phase ϕ̂ are smaller for large
ratios EJ/EC , whereas the charge fluctuations will be large. Thus, the charge degree of
freedom is highly delocalized over the large capacitor and renders the transmon insensitive to
charge fluctuations, which rapidly led to improved coherence times of superconducting qubits.
The creation and annihilation operators can be used to rewrite the Hamiltonian, where the
rotating-wave approximation keeps only energy conserving terms

Ĥ ≈
(√

8EJEC − EC
)
b̂†b̂− EC

2 b̂†b̂†b̂b̂. (1.19)

The resonance frequency of the fundamental transmon transition ω01 =
(√

8EJEC − EC
)
/~

differs to the transition frequency from the first to the second excited state by the anhar-
monicity EC ∼ α.

Flux-Tuning

Two Josephson junction embedded in a loop form the direct current superconducting quantum
interference device (DC SQUID). Implemented in a transmon circuit it leads to the ability
to tune its resonance frequency. For two identical junctions in a ring that is penetrated by
an external magnetic flux Φ the two supercurrents Ia and Ib can interfere to have the total
supercurrent

Itot = Ia + Ib = 2Ic sin
(
ϕa + ϕb

2

)
cos

(
ϕa − ϕb

2

)
. (1.20)

Here, we already introduced the phase differences ϕa and ϕb between the superconducting
electrodes for both Josephson junctions a and b respectively. Integrating the gauge invariant
second London equation [33] along a path around the SQUID loop yields the magnetic flux
Φ that penetrates the loop

ϕa − ϕb = 2πΦ
Φ0

. (1.21)

The total current through the SQUID is then given by

Itot = Ic,eff sin
(
ϕb + πΦ

Φ0

)
, (1.22)
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where the effective critical current Ic,eff = 2Ic cos
(
πΦ
Φ0

)
has a strong dependence on external

magnetic flux. If both Josephson junctions have different critical currents Ic,a and Ic,b, the
total critical current Ic, eff is then distributed over the junctions as

Ic,eff = (Ic,a + Ic,b) cos
(
πΦ
Φ0

)√
1 + d2 tan2

(
πΦ
Φ0

)
. (1.23)

The difference of the junction critical current is given by the ratio d = Ic,a−Ic,b
Ic,a+Ic,b

and effectively
sets a bound on the lowest achievable critical current. The Josephson energy of the transmon
can then be tuned according to

EJ (Φ) = EJΣ cos
(
πΦ
Φ0

)√
1 + d2 tan2

(
πΦ
Φ0

)
, (1.24)

in order to change its resonance frequency ω01 (Φ) =
(√

8EJ (Φ)EC − EC
)
/~. More details

on designing the transmon parameters can be found in Sec. 3.3.1.

1.4 Bloch-Sphere Representation
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Figure 1.4: Bloch sphere representation of a qubit. A pure qubit state is represented by a
point on the surface of the sphere, while a mixed state is located inside the sphere. The vector
that points from the center to any point inside or onto the surface of the sphere is called the
Bloch vector, which is defined by the angels φ and θ. The logical qubit basis states |0〉 and
|1〉 (also often |g〉 and |e〉) are the poles of the Bloch sphere with eigenvectors of the Pauli
matrix σz. The fact that they are the basis states implies |〈ψ|ψ〉|2 = 1, which gives the radius
of the sphere. In the Schroedinger picture the qubit vector precesses around the z-axis with
frequency ω01.

Quantum information often uses the Bloch sphere to represent the logical state of a qubit |0〉
and |1〉. The Hilbert space of a multi-level system, like a transmon, is then reduced to the
ground and first excited state. The Bloch vector describes a quantum state |ψ〉 = α |0〉+β |1〉
of this subsystem. A pure quantum state has unit length, such that |α|2 + |β|2 = 1, which on
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the Bloch sphere corresponds to a vector connecting the center to any point on the surface.
The z-axis connects the north and south poles of the qubit globe and, as the states |0〉 and
|1〉 of the qubit eigenbasis are located there, is called the longitudinal axis [35]. The x and
y axes are called the transverse axes. Using the spherical coordinate system the state vector
can be mapped onto the polar 0 < θ < π and azimuthal angle 0 < φ < 2π

|ψ〉 = cos θ2 |0〉+ eiφ sin θ2 |1〉 , (1.25)

where θ is now the mixing angle of ground and excited state and φ is the phase of the qubit
state. The time evolution of a pure state can be described by the time evolution operator
Û(t) = eiĤt = eiω01σ̂zt/2, where Ĥ is the time-independent qubit Hamiltonian, quantized along
the z-axis, with basis states |0〉 and |1〉. Applying the time transformation to the state |ψ〉 in
(1.25) yields the time-dependent qubit state in the Schroedinger picture

|ψ(t)〉 = e−iω01σ̂zt/2|ψ〉

= cos
(
θ

2

)
|0〉+ sin

(
θ

2

)
ei(φ−ω01t)|1〉.

(1.26)

The ground state |0〉 and excited state |0〉 are eigenstates of the Pauli matrix σ̂z, such that
σ̂z |0〉 = − |0〉 and σ̂z |1〉 = |1〉. The state |ψ(t)〉 is precessing around the quantization axis
(z-axis) with the transition frequency of the qubit. In particular, the phase is evolving in time
with constant angular frequency ω01.

Qubit Driving
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Figure 1.5: Rabi oscillations. The time evolution of a qubit that is driven with amplitude
Ω = 1 shows oscillations between the states |0〉 and |1〉, see Eq. (1.31). The probability of
finding the qubit in the excited state for a resonant drive ∆ = ω01 − ω = 0 oscillates between
0 and 1 while a detuned drive ∆ 6= 0 cannot reach 1 anymore. However, for an off-resonant
drive the excited state population can be increased when the transition is driven with a larger
drive amplitude.

The fundamental transition frequencies of transmon qubits are usually in the GHz regime,
thus can be driven by a microwave signal. The time evolution of a qubit state |ψ(t)〉 in the
Schroedinger picture is given by the Hamiltonian Ĥ acting on the initial state |ψ0〉

|ψ(t)〉 = eiĤ(t−t0) |ψ0〉 (1.27)
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A drive with amplitude Ω couples transversally and induces transitions between the ground
and the excited state. In the driven qubit Hamiltonian this drive is modeled by a σ̂x Pauli
operator

H = ~ω01
2 σz + ~Ω cos(ωt+ ϕ)σx, (1.28)

with a possible phase offset ϕ, now omitting the operator hat notation for simplicity. The first
term describes the precession around the z-axis of the Bloch sphere at the qubit frequency
ω01 for an initial state |ψ0〉. The transformation H̃ = U(t)HU †(t) − i~U(t)∂tU †(t) with
U(t) = eiωσzt/2 takes the Hamiltonian into the rotating frame of the drive, such that it
reads

H̃ ≈ h∆
2 σz + h

Ω
2 (cos(ϕ)σx + sin(ϕ)σy) , (1.29)

where ∆ = ω01 − ω is the detuning between the qubit frequency ω01 and the drive frequency
ω. We also applied the rotating wave approximation, that neglects fast rotating terms of the
form e2iωt, such that we can see that the microwave drive induces a rotation around an axis
in the xy-plane of the Bloch sphere. By switching to the Schroedinger picture we remove
the time dependence of the operators such that we can simplify the Hamiltonian for ϕ = 0,
yielding

H̃ = h
∆
2 σz + h

Ω
2 σx. (1.30)

The probability of finding the qubit in the excited state is given by P1(t) = |〈1 | ψ(t)〉|2.
Solving the Schroedinger equation with the simplified driven qubit Hamiltonian H̃, we ob-
tain [36]

P|1〉 = |〈1 | ψ(t)〉|2 = Ω2

Ω2 + ∆2 sin2
(√

Ω2 + ∆2

2 t

)
. (1.31)

A resonant microwave drive ∆ = ω01 − ω = 0 will periodically swap the probability to find
the qubit in the excited state between zero and one, which can be observed in Fig. 1.5. This
periodic oscillation is called Rabi cycle. It is usually one of the first experiments that is carried
out with the time-resolved measurement setup as it allows us to verify that the qubit can be
coherently flipped. We can see that a detuned pulse is not able to reach 100% excited state
population.

We can also re-write the drive Hamiltonian in the rotating frame by taking into account
the experimental pulse generation. For this we define the input signals of an IQ-mixer as
I = cos (φ) the in-phase component and Q = sin (φ) the out-of-phase component. By using
a similar procedure we can write down the Hamiltonian for a drive that is resonant with the
qubit [35]

H̃ = −Ω
2 (Iσx +Qσy). (1.32)

This shows that if we create a pulse through the I component of the mixer such that we
consider it an in-phase drive we rotate the Bloch vector around the x-axis, while a signal
through Q creates an out-of-phase signal and therefore rotations around the y-axis.
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1.5 Open Quantum Systems

For superconducting qubits the various decoherence mechanisms play an important role for the
goal of building a quantum computer. Thus, there are many research areas that try to address
the problem from different angles, summarized in Ref. [35]. These areas include the fabrication
process that always introduces unwanted contamination and material defects [37, 38], new
qubit designs that aim to reduce the susceptibility to certain noise sources, as well as improving
cryogenic wiring [39] and instrument control.

In a closed quantum system we can fully predict the state evolution of the qubit. Similar to
the last section we only need to know the initial state and the Hamiltonian that describes
the system dynamics. In open systems the quantum states are constantly exposed to noise
sources that lead to decoherence and destroy the fragile quantum information. Hence, the ideal
quantum state as the representation and only considering unitary evolution is not sufficient.
The density matrix ρ allows for statistical mixtures and can therefore describe a quantum
state that is affected by noise, thus does not lie on the surface of the Bloch sphere

ρ =
∑
i

pi |ψi〉 〈ψi| with
∑
i

pi = 1 (1.33)

For low temperatures kBT << ω01~, we can neglect thermal excitation σ+. With the free
qubit Hamiltonian Ĥ = ~ω01σ̂z/2, the time evolution of a quantum state ρ coupled to a
dissipative bath can be modeled by a Lindblad master equation [34, 40, 41]

ρ̇ = −i
[
Ĥ, ρ

]
+ κD[σ̂−]ρ+ 2γφD [(σ̂z + 1)/2] ρ. (1.34)

In the master equation we used the dissipators D for operator Â that are defined as

D[Â]ρ = ÂρÂ† − 1
2
{
Â†Â, ρ

}
. (1.35)

Each dissipator accounts for a decoherence channel described by the collapse operators Â
and corresponding decoherence rates. The collapse operators for transversal noise are σ+ =
1
2 (σx − iσy) and σ− = 1

2 (σx + iσy) and for longitudinal noise σz. We also introduced the
longitudinal relaxation rate κ of the qubit, which is caused by energy exchange with the
environment. In the absence of thermal driving, the relaxation rate κ describes the energy
decay from the excited state of the qubit |1〉 to the ground state |0〉 [42]. The characteristic
time scale for the energy relaxation is the T1 time

T1 = 1
Γ1
' 1
γ↓
' 1
κ
. (1.36)

The transverse relaxation rate Γ is associated with the coherence time T2 that quantifies
the characteristic lifetime of coherent superpositions. It includes contributions from pure
dephasing γφ as well as energy relaxation κ = Γ1

T2 = 1
Γ =

(Γ1
2 + γφ

)−1
(1.37)
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Figure 1.6: Cavity quantum electrodynamics. a Natural atoms interact with the photonic
mode of a mirror cavity. The interaction between the atom and the photon is enhanced by
each round trip of the photon that is reflected from the cavity walls. b The equivalent system
in the microwave regime consists of a resonator and a superconducting qubit. c The lumped-
element representation shows the harmonic oscillator with a linear inductor and capacitor,
while the qubit inductance is dominated by the Josephson junction. The coupling is realized
by a capacitance between the separate circuits.

1.5.1 Cavity Quantum Electrodynamics

Quantum electrodynamics was introduced by P.A.M Dirac in 1927 [43] and describes the
interaction between electromagnetic radiation and matter. Since then the theory was further
developed by S-I Tomonaga [44], J. Schwinger [45] and R.P. Feynman[46] for which they were
awarded the physics Nobel prize in 1965. However, from an experimental point of view, it
seemed difficult to observe QED effects at the level of single excitations because the interaction
between individual atoms and photons are too weak. For a field in 3D space, the large mode
volume in combination with the small atomic dipole moment imposed an obstacle on the
experimental field that took until the late 1980s to be solved by the emergence of cavity
quantum electrodynamics [47].

Cavity quantum electrodynamics studies the fundamental interaction of a single light mode
and an atom. By placing the atom inside an optical cavity that typically consists of two
mirrors, the spontaneous emission can be reduced or enhanced. The setup is schematically
shown in Fig. 1.6a. Effectively, the photon is reflected back and forth from the cavity mirrors
such that it passes the atom many times and enhances the interaction probability. The
circuit analogue to a natural atom trapped between two mirrors is realized by placing a
superconducting qubit, such as a transmon into a metallic cavity, shown in Fig. 1.6b or by
integrating both constituents into an on-chip circuit. The metallic structures give rise to a
capacitive coupling between the transmon and the cavity or on-chip resonator, such that we
can absorb both realizations of Fig. 1.6a & b into the circuit representation in Fig. 1.6c. The
resonator is described by its frequency ωr, the root mean square voltage Vrms and the bosonic
creation and annihilation operators b̂, b̂†, such that the Hamiltonian of the coupled system is
given by [11]

Ĥ = 4EC
(
N̂ −Ng

)2
− EJ cos(ϕ̂) + ~ωrb̂

†b̂+ d̂Vrms
(
b̂+ b̂†

)
. (1.38)

The first two terms describe the transmon, similar to Eq. (1.16) from Sec. 1.3 and the second
term the cavity, derived in Sec. 1.1. The last term describes the interaction between the qubit
dipole operator d̂ = 2eCcN̂/CΣ and the resonator field. By introducing the matrix elements of
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the coupling strength ~gij = dijVrms with dij = 2eCc/CΣ〈i|N̂ |j〉 we can write the Hamiltonian
in the basis of the uncoupled transmon eigenstates |i〉

Ĥ/~ =
∑
j

ωj |j〉 〈j|+ ωrb̂
†b̂+

∑
i,j

gij |i〉 〈j|
(
b̂+ b̂†

)
. (1.39)

For large enough ratios of EJ/EC we find that only nearest neighbor coupling is relevant
which allows us to truncate the higher states of the transmon and reduce the description to
that of a two-level system. If the qubit-cavity coupling rate is significantly smaller than the
transition frequencies of qubit and cavity, i.e. g01 >> ω01, ωr the rotating wave approximation
can be applied to eliminate the counter-rotating terms σ̂+â†, σ̂−â describing the simultaneous
excitation or deexcitation of both the transmon and the resonator. The result is the effective
Jaynes-Cummings Hamiltonian [48, 49]

ĤJC = ~ω01
2 σ̂z + ~ωrb̂

†b̂+ ~g
(
b̂σ̂+ + b̂†σ̂−

)
. (1.40)

When the qubit and the resonator are resonant, the last term describes the exchange of indi-
vidual excitations between the qubit and cavity with rate g. However, the big advantage in
superconducting systems is the fact that g can be so large that the system can be operated
in the so-called dispersive regime, where the qubit is far detuned from the cavity frequency
∆ = ω01 − ωr � g. State-of-the-art quantum computing approaches make use of the disper-
sive regime by reverse engineering the Purcell effect [50]. The reduced mode density at the
qubit frequency compared to free space decreases the spontaneous emission rate of the super-
conducting qubit. This enables long qubit coherence times while it still remains accessible
for manipulation by applying large amplitude control pulses that compensate for the reduced
mode density. Furthermore, the strong coupling between the cavity and the qubit enables a
readout of the qubit state only by measuring the cavity. The dispersive Jaynes-Cummings
Hamiltonian is obtained by the Schrieffer-Wolf transformation and reads [51]

Ĥdisp ≈ ~ω′r b̂†b̂+ ~ω′01
2 σ̂z + ~χb̂†b̂σ̂z, (1.41)

where the renormalized resonance frequencies are measured in the experiment for low power [34,
52]

ω′r = ωr −
g2

∆− EC/~
and ω′01 = ω01 + g2

∆ , (1.42)

with the bare qubit frequency ω01 and bare resonator frequency ωr. The last term of Eq. (1.41)
shows that the information about the qubit state is now encoded in the frequency of the
resonator that undergoes a qubit state dependent shift χb̂†b̂σ̂z with

χ = − g2EC/~
∆ (∆− EC/~) . (1.43)

When probing the resonator with a microwave drive at the frequency that corresponds to
the qubit being in state |0〉, the transmission or reflection will change when the qubit state
changed to |1〉 because of the shifted resonance frequency of the resonator. This technique
is enabled by the dispersive approximation and offers a way to read out the qubit state in
a quantum non-demolition measurement, which means that the projected state of the qubit
remains preserved.
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1.5.2 Waveguide Quantum Electrodynamics

Observing QED effects for single atoms [53] or molecules [54] in three-dimensional (3D) space
is usually difficult due to the spatial mode mismatch between incident and scattered waves,
leading to imperfect interference [12]. An alternative platform for studying the interaction of
light and matter is waveguide quantum electrodynamics (QED). Here, an atom or artificial
emitter is coupled to a one-dimensional channel of propagating electromagnetic radiation. In
contrast to free space QED the modes are spatially confined into waveguide to enhance the
interaction between photon and atom. Compared to cavity QED, on the other hand, the
photons can freely propagate along one direction, whereas cavities confine the photon in all
spatial directions creating a standing wave. Traveling photons carry quantum information over
large distances which makes them especially interesting for building a quantum internet [55]
and add to the quantum optics toolbox in order to gain further insights into light-matter
interactions. Reviews on waveguide QED can be found in Refs. [1, 56–58].

a cb

400 nm 350 pm 50 µm 1 mm λ ~ 5 cm

1 cm

λ ~ 800 nm λ ~ 5 cm

Figure 1.7: Waveguide QED platforms. a A cold atom is coupled to an alligator photonic
crystal waveguide. The shaping of the waveguide enables efficient atom trapping and strong
photon-atom interactions. b Superconducting qubits are capacitvely coupled to an integrated
microwave transmission line. c Rectangular waveguides are metallic blocks with a milled out
inner core that can be used as a waveguide QED platform. The ∼ cm wavelength of typical
superconducting qubit resonance frequencies sets the dimensions of the inner volume.

While in the 1990s atomic ensembles were coupled to optical fibres [59], one of the first
waveguide QED experiment with a single quantum emitter was conducted in 2007 when a
Cadmium Selenium (CdSe) quantum dot was coupled to a silver nanowire [60]. When the
emitter was optically excited in close vicinity to the waveguide the light was preferentially
emitted into the guided modes and could be detected at the ends of the wire. Since then
many waveguide QED platforms emerged, realized with various technologies, mostly inspired
by cavity QED experiments. To determine their usability for quantum information processing
it is important to benchmark their engineering capabilities. They can be assessed by the losses
and integratability of the utilized waveguides, as well as the coherence properties and flexibility
of the (artificial) atoms. The atom-waveguide interface is typically quantified by the coupling
efficiency parameter β = γr/κL, the ratio of the radiative decay rate γr of an individual emitter
into the waveguide modes compared to the total emitter linewidth κL = 2Γ. Commonly used
throughout literature is also the Purcell factor P = γr/γnr, where γnr includes all parasitic
(non-waveguide) energy relaxation rates but not dephasing γφ [25]. Moreover, the transmitted
power ratio through the waveguide for a weak probe signal that is resonant with the qubit is
|S21|2 = (1 − γr/2Γ)2, which is zero for Γ = γr/2, meaning that intrinsic decay γnr = 0 and
dephasing γφ = 0 are absent and the decoherence rate Γ = γr +γnr +γφ is reduced only to the
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waveguide decay. Thus, we can define the power extinction ratio as ζ = 1 − (γ′nr/Γ)2, where
γ′nr = γnr/2 + γφ. We will limit the further discussion to the coupling efficiency β.

Optical Waveguide QED

The waveguides for optical frequencies that are used to interface the emitter are usually
nanofibers [61], nanowires [62] or nanophotonic crystals [5, 63, 64]. They are manufactured
such that their geometries can be modified around the locations of the atom trapping sites.
Fig. 1.7a shows an illustration of a cold atom coupled to an alligator crystal waveguide,
where the periodic modulation of the waveguide is used to efficiently trap the atoms and
engineer strong atom-photon interactions [65]. Optical waveguides can be designed to be
almost lossless and photons can be routed over ∼ km distances at room temperature while
preserving entanglement [66], making them a prime candidate for intracity quantum commu-
nication channels [67]. Integrated photonic circuits usually suffer from inefficient chip-to-fiber
couplings but recent results show promising solutions [68].

Photonic waveguides are typically interfaced with quantum dots and natural atoms that have
transitions in the optical or near infrared frequency range. If a laser-cooled atom like Cesium
(Cs) is brought into the vicinity of the tailored waveguide section, it decays into the propagat-
ing modes and it is possible to record the emission at the output. The transitions of a given
atom are indistinguishable from those of another atom of the same species, i.e. they have no
frequency spread and reproducible decay rates. This allows to replicate experiments without
worrying about atom parameters, as well as employing large ensembles of identical emitters to
study collective behavior. Moreover, natural atoms have multiple transitions, some of which
have very long coherence times [69]. The disadvantage is clearly their small dipole moment
which results in low coupling efficiencies of around β ∼ 50% which is even lower for optical
nanofibers β ∼ 1% [21]. However the nanofiber trap can capture thousands of atoms that act
as an ensemble with enhanced emission properties.

Quantum dots are artificially fabricated regions on a semiconducting chip, that can be included
in the photonic circuit. Fabrication is a versatile tool to precisely engineer the properties of
the circuit such that strong atom-waveguide interactions were achieved β ∼ 99% [70]. The
disadvantages of artificial atoms such as quantum dots include imperfections between the
design and the actual sample, as well as impurities introduced during the fabrication process.
In addition, inhomogeneous broadening limits the use in waveguide QED experiments when
more than a single quantum dot is to be used [5].

Other waveguide QED platforms in the optical domain include silicon or germanium vacancies
that achieved similar coupling efficiencies like natural atoms. Their main limitations are
coming from imperfect spatial and polarization alignment of the vacancy, phonon broadening,
finite quantum efficiency which is set by γr/2Γ, the branching ratio of the transition and
residual spectral diffusion [71, 72]. Organic molecules have been successfully coupled to optical
fibres showing a rich transmission spectrum of many transitions [73]. However, the coupling
efficiency is relatively low β ∼ 0.2 and the investigation of a larger ensemble of ∼ 5000
molecules revealed a large spectral inhomogeneity.
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Waveguide QED with Microwave Circuits

The field of microwave waveguide QED experienced a tremendous spark when strong-coupling
of a superconducting flux qubit to a coplanar transmission line was realized in 2010 [12]. Even
though the qubit was suffering from a large dephasing rate, the elastic scattering measure-
ment revealed a high coupling efficiency β ∼ 0.76. Mitigating charge noise, by switching to
transmon qubits further improved the efficiency to β ∼ 0.96 [74]. The simplicity of the initial
circuits, shown in Fig. 1.7b, together with the vast engineering capabilities of superconduct-
ing qubits and rapidly evolving microwave measurement techniques induced the realization of
many superconducting waveguide QED experiments in the following years. The second ex-
cited state of a superconducting qubit extended the waveguide QED toolkit by showing that
electromagnetically induced transparency can be used to build a quantum switch for propa-
gating microwaves [75] or by realizing a controllable and tunable on-chip quantum amplifier by
achieving population inversion in a single qubit [76]. Exploiting the Autler-Townes effect [77]
enabled the realization of a single-photon router [74], while measuring the second order cor-
relation function g(2)(τ) showed strong bunching/antibunching of the transmitted/reflected
field, verifying the conversion of a coherent input state to a quantum state by the qubit [15].
It was shown that even the ultrastrong coupling regime can be reached with superconducting
qubits, enabling research in new parameter regimes where the coupling cannot be considered
a perturbation anymore [14]. Bandgap engineering of the transmission line allowed to observe
qubit-photon bound states when the emitter is tuned over a band edge [78]. Very minimalistic
circuits containing a single transmon qubit, strongly coupled to the end of a waveguide can
be used for sensitive spectroscopy of the thermal occupation of the waveguide [79]. In order
to obtain more insights into the different contributions to the total linewidth of a transmon,
Ref. [80] performed a systematic study of the involved decoherence mechanisms with a single
qubit in a transmission line.

While the last paragraph describes the development of individual qubits that are coupled to
a transmission line, the achievement of strong coupling encouraged the realization of multi-
qubit experiments. In 2013, strong waveguide-mediated interactions were observed for two
emitters that are separated by wavelength distances resulting in frequency-dependent corre-
lated emission and coherent-exchange coupling [19]. Surprisingly, it took 6 years until the
next multi-qubit waveguide QED experiments were conceived. By combining the localized
interaction of the qubits in the band gap and qubit-photon bound states in the passband, it
is possible to realize spin model simulations with both local and long-range interactions [17].
The possibility to create subradiant states that arise from correlated decay inspired the real-
ization of an atomic cavity with two qubits. It was shown that an excitation can be stored in
the decoherence-free subspace of two interacting qubits that can coherently swap interactions
with with another qubit [9]. Waveguide-mediated interactions between qubits can be used
to realize spatially entangled photonic states in the waveguide [16]. Subradiant states also
appear when a qubit is coupled at two spatial positions of a transmission line resulting in
a giant-atom with tunable linewidth [81]. In the limit when the qubit- or resonator-spacing
is much smaller than the wavelength the system can be described as a metamaterial. Effec-
tively the photons travel through the metamaterial which yields new engineering possibilities,
especially for realizing waveguides with slow-light [10, 82].

Figure 1.7c shows the conceptual setup for rectangular waveguide QED. Even though rect-
angular waveguides have been used to realize non-reciprocity [23] and as an interconnect for
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showing entanglement over two fridges [83] it stays an exotic platform due to its physical
dimensions. However, the 3D inner volume offers many possibilities to engineer direct and
long-range interactions in multi-qubit systems or even selectively switch off the interactions
between individual qubits by properly arranging them [84]. The sharp cutoff-frequency en-
ables the formation of qubit-photon bound states and access to different polarizations of the
propagating modes offers versatile coupling schemes. More details on the rectangular wave-
guide are presented in Sec. 3.1.

Superconducting circuits have proven to be an excellent platform to realize various waveguide
QED experiments by realizing strong-coupling and incorporating multiple qubits. However,
in a large scale network a superconducting waveguide will not be as practical as an optical
fibre, thus it will be necessary to either achieve strong coupling for optical frequencies or build
an efficient microwave to optical converter. Another question for multi-qubit experiment is
how valid the two-level approximation is, especially for describing collective states beyond the
single excitation manifold [1].

System N ω01/2π Γr/2π β = Γr/2Γ
Cs atoms and nanofiber ∼ 103 340 THz 5 MHz 0.1
Rb atoms and nanofiber 6 390 THz 6 MHz 0.1

Cs atoms and alligator waveguide 3 340 THz 2.5 MHz 0.5
Superconducting qubits 10 10 GHz 5GHz 0.999

Quantum dots 1 340 THz 2 GHz 0.99
Si, N [85] vacancies in diamonds 2 410 THz 100 MHz 0.1

Organic molecules 1 410 THz 100 MHz 0.2

Table 1.1: Waveguide QED platforms. The table is adapted from Ref. [1] with N being
the maximal resonant emitters, ω01/2π the typical transition frequency of the emitter, Γr/2π
the maximal achieved radiative linewidths and β = Γr/2Γ the best coupling efficiency.
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CHAPTER 2
Waveguide Quantum Electrodynamics with
Superconducting Circuits

Waveguide quantum electrodynamics (QED) describes the interaction of a quantum emitter
with a one dimensional propagating mode continuum. For superconducting circuits we start
from an electrical engineering perspective that has to be translated into the language of
quantum optics, analogously to the derivation of the Jaynes–Cummings model [48] of circuit
QED. The waveguide and artificial atom are described by node voltages and fluxes, which are
promoted to quantum operators and yield a Hamiltonian that constitutes the typical electrical
expressions, inductances and capacitances. The second quantization introduces creation and
annihilation operators that are used to rewrite the Hamiltonian that describes the quantum
mechanical properties of the system. Losses, decay into the waveguide modes and all dynamics
concerning the qubit decoherence are modeled by introducing the master equation formalism
for open quantum systems. The ability to obtain analytical expressions for the multi-qubit
system lets us calculate or numerically simulate the observables that we want to measure in the
experiments. Here, we do not specifically outline the approximations and assumptions, needed
for the theoretical derivation but focus on the physical results. For many applications it is
sufficient to invoke the two-level approximation to describe the transmon behavior, based on
Refs. [20, 86]. However, we will see that it is necessary to go beyond the two-level description
of a transmon when considering the higher excitation manifolds in many-body waveguide
QED systems. A detailed derivation can be found in Ref.[87]. The chapter closely follows the
derivations of Refs. [20, 86, 87]

2.1 Waveguide Circuit Quantization

In order to describe the quantum mechanical properties of the full system we start by quantiz-
ing the guided modes along the superconducting waveguide, following the circuit quantization
procedure of Ref. [29]. We model the continuous waveguide modes as a set of linear harmonic
oscillators with capacitances C and inductances L shown in Fig. 2.1a and consider them to
be infinitesimally small unit cells of length dx with characteristic inductances Ldx and capac-
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ground
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Figure 2.1: Waveguide circuit representation. a The waveguide is modeled by a set of
inductances and capacitances to ground. We do not account for losses here, but they could be
added by a resistive element R. b The transmon qubit is coupled capacitively to the waveguide
and thus interacts with the propagating modes.

itances Cdx. The telegrapher’s equations describe the propagation of the voltage and current
through the waveguide [88]

∂V (x, t)
∂x

= −L∂I(x, t)
∂t

∂I(x, t)
∂x

= −C∂V (x, t)
∂t

(2.1)

The generalized flux variable Φ(x, t) is expressed in terms of the voltage and the position in
the waveguide x

Φ(x, t) =
t∫

−∞

V (x, t′)dt′ and V (x, t) = Φ̇(x, t). (2.2)

The node fluxes are defined as Φn = Φ(ndx, t) such that the capacitive and inductive energies
of the waveguide sections can be written analog to a harmonic oscillator

EC = C

2 Φ̇(x, t)2 and EL = 1
2L

(
∂Φ
∂x

)2
. (2.3)

The Lagrangian L = EC − EL of the system is

L = C

2

(
∂Φ(x, t)
∂t

)2
− 1

2L

(
∂Φ(x, t)
∂x

)2
. (2.4)

The non-commuting conjugate momentum of the node flux Φ(x, t) is the charge density
q(x, t) = ∂L

∂Φ̇ = CΦ̇(x, t) = CV (x, t). The Hamiltonian is determined by a Legendre transfor-
mation, where we now integrate over the infinite length of the waveguide

H =
∞∫
−∞

[
1

2C q
2(x, t) + 1

2L

(
∂Φ(x, t)
∂x

)2]
dx. (2.5)

Using the fact that the flux and charge density are canonical conjugates q(x, t) = CΦ̇(x, t),
we quantize the system by promoting the generalized coordinates to quantum operators and
introduce creation and annihilation operators a†k, ak for a mode with wave vector k [86]. The
operators fulfill the commutation relations[

Φ̂(x, t), q̂
(
x′, t

)]
= i~δ

(
x− x′

)
,

[
ak, a

†
k′

]
= δ

(
k − k′

)
,

(2.6)
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thus do not commute for x = x′ and k = k′. The commutation relation for the same operators
but different modes is zero, thus they commute. This allows to write down the Hamiltonian
for the waveguide in terms of bosonic creation and annihilation operators

H =
∑
k

~ωk
(
a†kak + 1

2

)
. (2.7)

The Hamiltonian shows that each mode k is modeled as a linear quantum harmonic oscillator.
By replacing the sum over all modes to an integral, we can rewrite the discretized spectrum
to the continuous waveguide case.

2.2 Coupling Transmon Qubits to Waveguides

If the physical size of the transmon is much smaller than the wavelength corresponding to its
resonance frequency, it can be modeled as a lumped element circuit and added to the circuit
of the waveguide. For a transmon that is capacitively coupled to a node of the waveguide
in Fig. 2.1b, the discrete Lagrangian can be adapted to [86, 89]

L =
∑
n

Cdx

2 Φ̇n(t)2 − (Φn+1(t)− Φn(t))2

2Ldx + Cq
2 Φ̇q(t)2

+ EJ cos
(2eΦq

~

)
+ Cc

2
(
Φ̇0(t)− Φ̇q(t)

)2
,

(2.8)

where we account for all waveguide nodes with the sum over n and the node flux at the
transmon Φq. We write the Lagrangian as a sum to see that the transmon contribution
is just another node term, now described by the characteristic transmon parameters. The
capacitance Cc yields the coupling to the waveguide but also additionally contributes to the
total transmon capacitance, together with the junction capacitance Cq. In the case of a split
junction the Josephson energy EJ is tunable by an external flux, see Eq. (1.24). The conjugate
variable of the flux at the transmon position is the charge

Qq = ∂L
∂Φ̇q

= CqΦ̇q(t) + Cc
(
Φ̇q(t)− Φ̇0(t)

)
(2.9)

Assuming that the waveguide capacitance is much larger than the coupling and junction
capacitances the qubit capacitances act as a small perturbation [20]. Canonical quantization
of the waveguide charge q̂ and flux Φ̂, as well as the transmon charge Q̂q and flux Φ̂q results
in the Hamiltonian

Ĥ =
∞∫
−∞

q̂(x, t)2

2C + 1
2L

(
∂Φ̂(x, t)
∂x

)2

dx+ Q̂q(t)2

2 (Cc + Cq) − EJ cos
(

2eΦ̂q
~

)

+ Cc
CΣ

q̂(0, t)Q̂q(t),

(2.10)

where the total transmon capacitance is CΣ = Cq +CcC. The last term describes the charge-
interaction between the waveguide and the transmon. The charge density operator q̂(x, t) =
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CV̂ (x, t) and flux operator Φ̂(x, t) of the waveguide can also be written in terms of creation
and annihilation operators [90]

q̂(x, t) = −iC
∫ √~ωZ√

4π
dω
(
â(ω)ei(kx−ωt) − â†(ω)e−i(kx−ωt)

)
,

Φ̂(x, t) =
∫ √~ωZ√

4π
dω
(
â(ω)ei(kx−ωt) + â†(ω)e−i(kx−ωt)

)
.

(2.11)

For the Hamiltonian, we arrived at a description of the energy in the system expressed by
inductances and capacitances attributed to either the waveguide or the transmon qubit. Even
though the system is fully described by the Hamiltonian in this form, for the quantum me-
chanical description we introduced the second quantization by expressing the flux and charge
operators in terms of the creation and annihilation operators. The same can be done for the
transmon term, especially when considering only the two lowest energy states. In general, this
is necessary because we want to describe single excitation Fock states and explain quantum
many-body systems which is much more complicated in the electrical engineering language.

2.3 Master Equation Formalism

By substituting the expressions for the charge and flux operators of Eq. (2.11) into the
waveguide-transmon Hamiltonian Eq. (2.10) in the flux and charge basis we can rewrite it
in second quantization, following Refs. [20, 86, 87]. The description can include multiple
emitters, thus we sum over j. We will see in Sec. 2.6 that we can describe the transmon as
a harmonic oscillator with an on-site interaction term, that will accurately model the higher
excitation manifolds. For now, we are only interested in the one-excitation manifold, thus
we approximate the transmons as two-level systems, such that it is sufficient to describe
the jth transmon charge operator by the σxj Pauli matrix. Furthermore we neglect direct
capacitive coupling between the qubits. The bare emitter Hamiltonian for N transmons with
fundamental transition frequency ωj simplifies to the qubit Hamiltonian ĤQ if we only consider
the ground and first excited state

ĤQ = ~
N∑
j=1

ωj σ̂
+
j σ̂
−
j , (2.12)

with the Pauli raising operator σ̂+
j and lowering operator σ̂−j . The propagating modes of the

rectangular waveguide are described by right- and left-moving photons that are created by
a†R(L)(ω) and annihilated by aR(L)(ω) at frequency ω, corresponding to positive and negative
wavevectors k = ±2π/λ. The continuous Hamiltonian describing the waveguide fields reads

ĤF =
∞∫
0

dω~ω
[
a†R(ω)aR(ω) + a†L(ω)aL(ω)

]
. (2.13)

The equivalent to the charge coupling term of the electrical dipole of the transmons and the
waveguide photons is described by the interaction Hamiltonian

HI =
N∑
j=1

i~gj
∞∫
0

dω
√
ω
[
a†L(ω)eiωxj/v − aL(ω)e−iωxj/v + a†R(ω)e−iωxj/v − aR(ω)eiωxj/v

]
σxj ,

(2.14)
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where we approximated the qubit charge operator by the Pauli matrix σxj = σ+
j + σ−j and in-

troduced the speed of light in the waveguide v, as well as the dimensionless coupling strength
gj as defined in Ref. [20]. The system is now described only by qubit and photon operators in
second quantization. However, the continuum of the waveguide modes make the calculations
complicated. By tracing out the electromagnetic environment, we can insert the Hamilto-
nian into a master equation for the qubit density operator ρ and model the waveguide as a
dissipative bath [9, 20, 56, 91, 92]

dρ̂

dt
= −i

ĤQ
~

+
∑
j

αj(t)σ̂xj +
∑
j,k

J̃j,kσ̂
+
k σ̂
−
j , ρ̂

+
∑
j,k

γj,k

(
σ̂−j ρ̂σ̂

+
k −

1
2
{
σ̂+
k σ̂
−
j , ρ̂

})
(2.15)

The master equation only keeps track of the qubit dynamics and their interaction with each
other via the waveguide. Compared to the Hamiltonian description, the explicit waveguide
dynamics are not considered. Instead, we assume a coherent time-dependent drive α(t) from
the left that acts on the qubits at position xj = tjv

αj(t) = Ωj

2 sin (ωd(t+ tj)), (2.16)

where Ωj is the drive amplitude seen by qubit j and ωd the drive frequency. The other terms
of the master equation describe waveguide-mediated interactions [19, 20] with the coefficients
J̃j,k and γj,k describing the coherent exchange interaction and correlated decay between sites
j and k. With the time tj,k = |tj − tk| that it takes a photon to travel between qubit sites j
and k for the case of resonant qubits, the coefficients take the simple form

γj,k = 4πgjgkωj cos (ωjtj,k) , (2.17)

J̃j,k = 2πgjgkωj sin (ωjtj,k) . (2.18)

The counter-periodic behavior of those interaction terms implies that the qubit arrangement
plays an important role when spacing qubits along the photon propagation of a waveguide
QED circuit. Correlated decay is maximized when the qubit spacing is an integer multiple of
λ/2, simultaneously the coherent exchange coupling is switched off. In contrast, when their
spacing is an odd multiple integer of λ/4 the coherent exchange of excitations between the
qubits is maximized but the correlated decay is zero.

The assumption that α(t) is the only drive allows to remove the time-dependence of the
Hamiltonian by going into the frame that rotates with the frequency of the drive. The
rotating wave approximation removes the fast rotating terms, such that e±2iωt ∼ 0, which
yields an effective time-independent Hamiltonian

Ĥeff/~ =
N∑
j=1

δωj σ̂
+
j σ̂
−
j +

N∑
j=1

(Ωj

2 σ̂+
j + h.c.

)
+

N∑
j,k

J̃j,kσ̂
−
j σ̂

+
k . (2.19)

Here, the frequency detuning between the qubit and the drive is δωj = ωj−ωd and we consider
the case where thermal driving of the excited state is negligible, i.e. ~ω >> kBT . In order to
capture not only the waveguide decay, we extend the effective master equation by replacing
the waveguide coupling rate by an effective decay rate Γ1 = γr + γnr that not only includes
radiative decay into waveguide modes γr but also the non-radiative decay rate γnr. The non-
radiative decay rate quantifies all intrinsic relaxation channels. Although these processes are
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radiative, we use the term "non-radiative" because the emitted photons are not radiated into
the waveguide, thus not accessible for our detection setup. The waveguide photons on the
other hand are entangled with the emitter and can be measured at the output [93]. Pure
dephasing of the qubits is accounted for by the rate γφ. Thus, we can write down the effective
master equation

dρ̂

dt
= − i

~

[
Ĥeff , ρ̂

]
+

N∑
j,k

γ′j,k

(
σ̂−j ρ̂σ̂

+
k −

1
2
{
σ̂+
k σ̂
−
j , ρ̂

})
+

N∑
j=1

γφ,j
2
(
σ̂zj ρ̂σ̂

z
j − ρ̂

)
. (2.20)

This master equation can be solved analytically in the steady state ˙̂ρ = 0 and the condition
ρ00 + ρ11 = 1 to obtain the density matrix. In particular, we are interested in the coherences
which are given by the the off diagonal elements ρ01 = ρ∗10

ρ01 = − Ω
2Γ

i+ δω/Γ

1 + Ω2

γ′Γ + δω2/Γ2
, (2.21)

where we defined the total qubit decoherence rate Γ = (γr + γnr)/2 + γφ = Γ1/2 + γφ. The
total energy relaxation rate Γ1 is usually associated with the characteristic relaxation time
T1 = 1/Γ1 of a qubit, while the decoherence rate Γ is associated with the characteristic
coherence time T2 = 1/Γ, as defined in Sec. 1.5. A typical measurement of the waveguide
transmission for different probe frequencies shows a Lorentzian distribution around the qubit
resonance frequency. The attributed linewidth is associated with the qubit decoherence rate
Γ. For a qubit without any decoherence except the waveguide decay, the transmission of an
elastically scattered resonant low power drive is zero, meaning it was perfectly reflected [12].
Decoherence other than the waveguide results in non-zero transmission, such that the ratio
between the width and depth of the Lorentzian enables to distinguish between radiative and
non-radiative decoherence. Thus we define the non-radiative decoherence rate γ′nr = γnr/2 +
γφ, consisting of non-radiative energy relaxation and pure dephasing to distinguish between
information loss and decay into the waveguide. More detailed studies of the incoherently
scattered microwaves and time-resolved measurements give further insights into the various
decoherence mechanisms [80].

To arrive at a master equation we traced out the photonic degrees of freedom. This allowed
us to express the stationary density matrix in terms of qubit decoherence rates and the drive
amplitude but prevents the description of the photons, that we usually want to detect. We
can retrieve the photonic fields with the help of input-output theory for an input drive coming
from the left and only considering right moving photons to find the transmission coefficient.
The field operators can be expressed as [20, 87, 94, 95]

âout = âin − i
√
γr
2 σ̂
−. (2.22)

The expectation value of the input field operator 〈âin 〉 is directly related to the driving
amplitude Ω at the qubit position [9]

Ω/2 = −i 〈âin 〉
√
γr/2. (2.23)

This means that the problem reduced to finding the expectation value of the qubit lowering
operator, which is related to the density matrix as 〈σ̂−〉 = Tr(ρ̂σ̂−) = ρ10 with ρ01 = ρ∗10,
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which we solved for in Eq. (2.21). This allows us to define the complex transmission parameter
S21 as the ratio of the output and input fields ain and aout [20]

S21(ω) = 〈aout 〉
〈ain 〉

= 1− γr
2Γ

1− iδω

Γ

1 +
(
δω

Γ

)2
+ Ω2

(γr + γnr) Γ

, (2.24)

The complex transmission parameter corresponds to the scattering matrix S, where S11(ω)
is the reflection parameter, while the telegrapher equations imply the conservation of the
currents, such that S11(ω) + S21(ω) = 1 [12]. The scattering matrix is usually obtained
by probing the system with a coherent low power drive, such that Ω � γr and performing
a heterodyne detection. Thus the complex values of the scattering matrix have the form
S = I + iQ and the absolute transmitted amplitude is |S21| =

√
I2 +Q2. Removing all

decoherence channels except the waveguide yields that the absolute transmission |S21| is zero
for a resonant probe, while the reflected amplitude is S11 = 1 − S21 = 1, indicating that the
qubit acts as a perfect mirror for single photons [12]. The absence of transmission can be
understood when considering interference effects. The photons that were absorbed by the
qubit and re-emitted into the waveguide acquire a π-shift, thus destructively interfere with
the incident signal.

Qubit dephasing leads to the loss of phase information during the time that the excitation
is absorbed. The re-emitted signal will have a phase that does not match the phase of the
transmitted signal, which results in imperfect interference and thus S21 > 1. Similarly, non-
radiative decay results in a smaller amplitude of the scattered signal, also leading to imperfect
destructive interference. The same is true if the probe power is too large and saturates the
qubit transition, as the drive rate on the qubit depends on the input power and the waveguide
coupling [9]. This is due to the fact that the qubit can only absorb one photon at a time and
needs to relax to the ground state before being able to absorb another one. If the average
number of photons in the input field at the qubit position becomes too high such that the
qubit cannot fully relax to the ground state anymore we measure non-zero transmission. In
particular, at these high drive strengths, a considerable fraction of the radiation is inelasti-
cally scattered and cannot be detected by the heterodyne detection scheme. However, the
inelastically scattered radiation can still be observed by a power sensitive measurement of
the resonance fluorescence. The appearing sidebands are a signature of the dressed transmon
ground and excited states. Together with the bare qubit transition they form the Mollow
triplet [96], where the frequency of the inelastically scattered radiation depends on the drive
strength. The measurement of the Mollow triplet implies that |S21|2 + |S11|2 < 1, even for
γφ = γnr = 0 [12, 97].

2.4 Waveguide-Mediated Coupling

Waveguide-mediated interactions appear for two or more qubits that are coupled to the propa-
gating waveguide modes. For the case of two resonant qubits Q1 and Q2 the type of interaction
depends on the argument inside the trigonometric functions of Eqns. (2.17) and (2.18). Phys-
ically, this means that the amount of correlated decay or coherent exchange depends on the
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phase that a photon acquires when it travels from Q1 to Q2. In order to obtain an exper-
imental tuning parameter that is able to switch between both types of interactions either
the distance between the qubits, the photon velocity or the qubit resonance frequency has
to be tunable. In the experiment, we simply utilize the flux-tunability of the split junction
transmons to change their resonance frequencies, effectively changing the emission wavelength
λ. More details on the theoretical studies of waveguide-mediated interactions between two
transmons can be found in Refs. [20, 87, 98].
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Figure 2.2: QuTiP simulation: Correlated decay. a While Qubit 1 is kept constant at
a frequency corresponding to an effective separation of d = λ, we change the frequency of
Qubit 2. By changing the frequency of the probe we can simulate its transmission through the
system to observe the characteristic crossing. b On resonance we observe the broadening of
the linewidth corresponding to the superradiant transition while the subradiant state cannot
be driven such that the transition disappears.

For the case of two resonant qubits ω1 = ω2 = ω and an effective qubit-qubit separation of
dx = λ correlated decay γ1,2 ∼ cos (ωt1,2) is maximized while coherent exchange coupling
J̃1,2 ∼ sin (ωt1,2) = 0 is absent. If we ignore all decoherence channels except the waveguide
we can write the dissipative interaction term of the master equation as [20]

dρ̂

dt
=

∑
µ=B,D

ΓµD
[
σ−µ

]
ρ̂, (2.25)

where the collective dissipator is now D[σ̂−µ ]ρ̂ = σ̂−µ ρ̂σ̂
+
µ −

{
σ̂+
µ σ̂
−
µ , ρ̂

}
with the indices µ = B,D

accounting for the dark and bright states of the new basis and the dressed lowering operators
σ̂µ. The states obtain correlated decay rates

ΓB = 2Γ and ΓD = 0, (2.26)

meaning that the bright state decays twice as fast as the individual qubits. The dark state
is decoupled completely from the waveguide and only limited by its internal decoherence
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properties. The dark state |D〉 = (|ge〉 − |eg〉) /
√

2 and bright state |B〉 = (|ge〉+ |eg〉) /
√

2
are symmetric and antisymmetric superpositions of the single qubit ground and excited state
|g〉 and |e〉. For a distance of λ, the phase relation of the electromagnetic field in the waveguide
is symmetric, meaning the phase between the qubits is an even integer multiple of π: ϕ = 2π.
Thus we can only excite the symmetric bright state. The dark state symmetry is opposite to
the field symmetry of the waveguide, eliminating the coupling to the drive field and and also
the decay into the waveguide. Note, that for a phase with an odd integer multiple of π, such as
for λ/2 the roles of dark and bright states are reversed, because the individual qubits will sit at
positions of opposite drive phase, thus |D〉 = (|ge〉+ |eg〉) /

√
2 and |B〉 = (|ge〉 − |eg〉) /

√
2.

In Fig. 2.2 we simulate two qubits around a frequency corresponding to d = λ with the
Quantum Toolkit in Python (QuTiP) [26]. By solving the effective master equation for the
case of two qubits separated by λ in the steady state we obtain the expectation value of
the lowering operator, that determines the scattering properties of a drive tone with the
corresponding waveguide symmetry resulting in the simulated transmission spectrum. On
resonance we see that the bright state obtains twice the single qubit linewidth, while the dark
state cannot interact with the waveguide drive and thus does not influence the transmission
amplitude.
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Figure 2.3: QuTiP simulation: Coherent exchange. a While Qubit 1 is kept constant at
a frequency corresponding to an effective separation of d = 3λ/4, we change the frequency of
Qubit 2. By changing the frequency of the probe we can simulate its transmission through
the system to observe the characteristic crossing. b There are no observable signatures of
super- and subradiance in the transmission, however the new eigenstates split by E = 2J with
|J | = γr/2 resulting in a distorted lineshape.
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In contrast to the λ spacing, when two qubits are separated by d = 3λ/4 correlated decay
γ1,2 ∼ cos (ωt1,2) = 0 is absent but the coherent exchange coupling J̃1,2 ∼ sin (ωt1,2) = γr/2 is
at its maximal rate. We recall from the effective Hamiltonian the coherent exchange term

ĤI/~ =
N∑
j 6=k

J̃j,kσ̂
j
−σ̂

k
+. (2.27)

In contrast to the correlated decay, the individual qubits still emit photons into the waveguide
that are then reabsorbed by the other. However, the system will hybridize and the new
eigenstates |+J〉 and |−J〉 split in energy by E = 2J̃j,k. Thus, the exchange interaction can
be interpreted as a modification of the Lamb shift due to the presence of the qubits coupled to
the same electromagnetic environment [20]. The virtual photons emitted and reabsorbed by
the same qubit contribute to the Lamb shift. When there is more than one qubit, the virtual
photons emitted by one can be reabsorbed by another. This exchange of virtual photons leads
to an effective qubit-qubit interaction well known in circuit quantum electrodynamics where
qubits interact strongly with a single mode of a resonator. For two resonant transmons that are
coupled to a mode of the resonator with coupling strengths g1 and g2, we observe an effective
interaction strength J̃1,2 = g1g2/δ between the transmons, where δ is the frequency detuning
between the transmons and the resonator frequency. In the waveguide case the interaction
type is the same but the qubits interact with a continuum of modes. The interaction stays
the same for any separation d = (2n + 1)λ/4 but the sign of J̃j,k will be negative for odd n
and positive for even n.

In the transmission simulation in Fig. 2.3, we notice that already the tuning map looks very
different from the correlated decay in Fig. 2.2. The sharp features when tuning into resonance
disappear and the lines blur together. In the experiment it can be helpful to compare the
flux maps in order to identify frequencies corresponding to correlated decay and coherent
exchange.

2.5 Direct Coupling

Instead of engineering an effective qubit-qubit interaction via the waveguide where they are
separated at least d = λ/4, we can study the case where they are at the same position with
respect to the propagation direction. According to Eq. (2.17) this results in collective decay
similar to the λ separated qubit pair. In addition to the collective decay, the vicinity of the
metallic transmon pads gives rise to a capacitive coupling that yields a coherent swapping
of excitations with rate Jj,k, similar to the waveguide-mediated coherent exchange coupling
strength J̃j,k. The coupling strength depends on the distance and orientation of the trans-
mon pads [84] and enables

√
iSWAP two-qubit gates in quantum processors [99]. The state

manifold yields a dark state |D〉 = (|ge〉 − |eg〉) /
√

2 and bright state |B〉 = (|ge〉+ |eg〉) /
√

2.
The individual qubits are exposed to the same phase by sharing a common position with
respect to the propagating field. The in-phase superposition of oscillating dipole moments
of the qubits interferes constructively, thus the bright state again obtains twice the coupling
to the waveguide, while the out-of-phase oscillating superposition destructively interferes to
form the decoupled dark state.
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Figure 2.4: QuTiP simulation: Coherent exchange via capacitive coupling. a When
two adjacent qubits are tuned into resonance they obtain bright and dark states. The capacitive
coupling splits the new eigenstates by 2Jj,k, which enables to witness the decoupling process
of the dark state if the splitting is large enough. b The bright state is visible in transmission
and couples stronger to the waveguide than the individual qubits γB = 2γr. Furthermore, the
coherent exchange coupling J1,2/2π = 45 MHz causes a detuning of the bare qubit frequencies
and the bright state (and dark state, not visible in transmission).

In Fig. 2.4 we simulate the transmission for two capacitively coupled qubits that are subjected
to the same phase relation by the waveguide. By changing the frequency of Qubit 2 the
decoupling and linewidth broadening of the dark and bright state is directly observable. The
continuous decoupling can be used as an in-situ tunable waveguide coupling to realize different
coupling regimes in the same experimental setup. In the extreme case the dark state decay is
only limited by internal dissipation while the bright state decay is orders of magnitude faster.
The splitting on resonance is defined by the effective capacitance between the transmons.
In the simulation we set the direct coupling strength to J1,2/2π = 45 MHz, thus observe a
splitting of 90 MHz. The coupling is highly engineerable by modifying the transmon design
and orientation with respect to each other [84], offering a versatile tool to engineer qubit-qubit
couplings in waveguide QED in addition to the waveguide-mediated interactions.

2.6 Four Transmons in a Waveguide

In this section we consider the full experimental system, consisting of a capacitively coupled
pair of transmons that interacts with a second pair via the waveguide. As depicted in Fig. 2.5,
they are tuned into resonance such that the bright transitions of the capacitively coupled
pairs match the λ/2-condition for correlated decay. In this scenario both local two-qubit
bright states interact via the waveguide and create the collective four qubit states |B4〉 and
|D3〉. The local two-qubit dark states |D1〉 and |D2〉 cannot interact via the waveguide. These
four states span the first excitation manifold. In the theoretical description we now model the
transmons as anharmonic oscillators, instead of two-level systems like in the previous sections.
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This is a necessity to accurately model the higher excitation manifolds, already for the two-
qubit case and becomes even more important when increasing the size of the many-body
system [87]. The section is adapted from Refs. [87, 100].

d = λ/2

Q4
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Q1

ΓB,4= 4Γ
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│D3〉

4Γγ'nr

γ'nr

ΓD,3 = γ'nrΓD,1 = γ'nr

ΓD,2 = γ'nr │D1〉

Figure 2.5: Schematic illustration of the full experimental setup. Two pairs of transmon
qubits that are separated by an effective distance d = λ/2 have a maximized correlated decay
coupling, mediated by the waveguide, as well as a capacitive coupling within the pair. The
interacting transmon system forms the four qubit one-excitation state manifold. It consists
of a global delocalized dark state |D3〉 and bright state |B4〉 with decay rate 4Γ, as well as
pairwise dark states |D1〉 , |D2〉 that are localized at the sites and do not interact with the
waveguide or the other pair.

Collective Spectrum of Anharmonic Oscillators

An array of L coupled transmons is modeled by the Bose-Hubbard Hamiltonian [35, 101–
104]

ĤBH
~

=
L∑
j=1

ωjn̂j −
L∑
j=1

αj
2 n̂j (n̂j − 1) +

∑
j 6=k

Jjkâ
†
j âk, (2.28)

where âj and â†j are the bosonic annihilation and creation operators of the site j. They obey
the commutation relation

[
âj , â

†
k

]
= δjk, with the number operator n̂j = â†j âj . Transmon

j has a transition frequency ωj between the ground state |g〉 and the first excited state |e〉
and anharmonicity αj . Here, the anharmonicity serves as a negative on-site interaction tuning
parameter that limits the bosonic nature of the system such that we can describe the transmon
as an anharmonic oscillator. For a small anharmonicity, the transmon behaves more like a
harmonic oscillator, while for a large anharmonicity the transmon behaves like a two-level
system. Capacitive coupling is responsible for the exchange of excitations between sites j
and k. For the arrangement in Fig. 2.5 the Bose-Hubbard Hamiltonian reduces to the energy
terms of four qubits with two direct coupling terms

ĤT/~ =
4∑
j=1

[
ωjn̂j −

αj
2 n̂j(n̂j − 1)

]
+ J12

(
â†1â2 + h.c.

)
+ J34

(
â†3â4 + h.c.

)
,

(2.29)



2 Waveguide Quantum Electrodynamics with Superconducting Circuits 31

In the presence of the waveguide radiation field, the dynamics is governed by a master equa-
tion [9, 20]

dρ̂

dt
= − i

~

ĤT + ~
∑
j,k

J̃j,kâ
†
kâj , ρ̂

+
∑
j,k

γj,k

(
âj ρ̂â

†
k −

1
2 â
†
kâj ρ̂−

1
2 ρ̂â

†
kâj

)

+
∑
j

γnr

(
âj ρ̂â

†
j −

1
2 â
†
j âj ρ̂−

1
2 ρ̂â

†
j âj

)
+
∑
j

γφ

(
n̂j ρ̂n̂j −

1
2 n̂

2
j ρ̂−

1
2 ρ̂n̂

2
j

)

+Kφ

(
N̂ ρ̂N̂ − 1

2N̂
2ρ̂− 1

2 ρ̂N̂
2
)
,

(2.30)

where ĤT is the Hamiltonian of the transmon array given in Eq. (2.29) and the coefficients
J̃j,k and γj,k are the coherent exchange interaction and correlated decay between sites j and k
from Eqns. (2.17) and (2.18). We include non-radiative dissipation γnr and pure dephasing
γφ of individual transmons. Global dephasing Kφ mainly arises from flux noise affecting all
transmon where we have denoted the global occupation operator N̂ = ∑4

j=1 n̂j . Even though
the effect of dephasing is negligible for the qualitative behavior of the simulation, they play an
important role in the definition of the lifetime T1 and coherence time T2 of the dark state. The
properties of the system are then governed by the non-Hermitian effective Hamiltonian,

Ĥeff/~ = ĤT/~ +
∑
jk

(
J̃j,k −

iγj,k
2

)
â†kâj −

i

2
∑
j

γnrâ
†
j âj −

i

2
∑
j

γφn̂
2
j −

i

2KφN̂
2. (2.31)

The eigenvalues of the effective Hamiltonian are in general complex valued, λξ = Eξ − i~
Γξ
2 ,

where the real part Eξ gives the energy and imaginary part Γξ the total decay rate of the
state |ξ〉. The effective Hamiltonian commutes with the total occupation operator, and thus
the eigenvalues form manifolds with integer number of quanta [100]. By only using the ex-
perimentally extracted single qubit parameters in table 4.1 and capacitive coupling strengths
in table 4.3, we can plot the transition frequencies and waveguide decay rates in Fig. 2.6.
The eigenstates of the first excitation manifold are either symmetric or antisymmetric with
respect to the exchange of transmon pairs. The two-excitation manifold also comprises states
that cannot be assigned to a pair-exchange symmetry, but instead they are symmetric or
antisymmetric with respect to the exchange of transmons within the pairs. The small differ-
ences of |D1〉 and |D2〉 arise from the unequal direct coupling strengths. This disorder lifts
the degeneracy of the dark states |D1〉 and |D2〉 in the one-excitation manifold, as well as
the states |W5(6)〉, |F7(8)〉 and |F10(11)〉 in the two-excitation manifold. In the two excitation
manifold is only one dark state |D9〉 = |D1〉 ⊗ |D2〉, that corresponds to the trivial case when
both local dark states are excited. The imaginary part of the eigenvalue Γξ gives the total
decay rate for the state, but we can also calculate the decay rates to individual states, which
sum up to Γξ.
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Figure 2.6: Transition frequencies and decay rates. Numerically obtained eigenlevels in
zero-, one- and two-excitation manifolds computed with the parameters of Tab. 4.3. The y-axis
gives the energy and x-axis the decay rate of the state. Here, the states that are symmetric
with respect to the exchange of pairs are colored blue and the antisymmetric ones red. The
states with no symmetry under qubit exchange are turquoise. The labeling for the states is
|D〉 - Dark, |B〉 - Bright, |W 〉 - Weakly radiant, |F 〉 - Faint and the numbering is ascending
in energy. F-states mainly contain one excitation in a local state, whereas in the W-states the
local states are doubly excited. Note, that it is possible to drive the W-states from |D3〉 and
|B4〉, but not the F-states.

Assuming that all transmons are identical and ignoring dephasing γφ and Kφ, we can ana-
lytically solve the eigenstates in zero-, one- and two-excitation manifolds. The one-excitation
states are obtained from the ground state with collective operators

D̂†1 = 1√
2

(
â†1 − â

†
2

)
, (2.32)

D̂†2 = 1√
2

(
â†3 − â

†
4

)
, (2.33)

D̂†3 = 1
2
(
â†1 + â†2 + â†3 + â†4

)
, (2.34)

B̂†4 = 1
2
(
− â†1 − â

†
2 + â†3 + â†4

)
. (2.35)

The states in the zero- and one-excitation manifold are then

|G〉 = |00; 00〉 = |0000〉 , (2.36)

|D1〉 =D̂†1 |G〉 = |00; 10〉 = 1√
2

(
|1000〉 − |0100〉

)
, (2.37)

|D2〉 =D̂†2 |G〉 = |00; 01〉 = 1√
2

(
|0010〉 − |0001〉

)
, (2.38)

|D3〉 =D̂†3 |G〉 = |01; 00〉 = 1
2
(
|1000〉+ |0100〉+ |0010〉+ |0001〉

)
, (2.39)

|B4〉 =B̂†4 |G〉 = |10; 00〉 = 1
2
(
− |1000〉 − |0100〉+ |0010〉+ |0001〉

)
, (2.40)
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where we have used two different bases. State |n1n2n3n4〉 is the Fock basis, where nj is the
number of excitations in the jth transmon. In state |B4D3;D1D2〉, on the other hand, B4,
D3, D1 and D2 refer to the number of excitation created by the collective operators B̂4, D̂3,
D̂1 and D̂2, respectively.

In the absence of anharmonicity α the eigenstates in the two-excitation manifold are obtained
by operating twice with the collective operators. Because of the anharmonicity, the real
eigenstates are linear combinations of these states and can be written in the both bases

|W5〉 = 1
Z5

2iγ − 4J +
√
U2 + 16

(
J − iγ

2

)2

√
2U

(
|00; 20〉 − |00; 02〉

)
+ |11; 00〉


≈0.47eiφ5

(
|2000〉+ |0200〉 − |0020〉 − |0002〉

)
+ 0.24eiψ5

(
|1100〉 − |0011〉

)
, (2.41)

|W6〉 =c1
(
|00; 20〉+ |00; 02〉

)
+ c2 |02; 00〉+ c3 |20; 00〉

≈0.47eiφ6
(
|2000〉+ |0200〉+ |0020〉+ |0002〉

)
+ 0.24eiψ6

(
|1100〉+ |0011〉

)
, (2.42)

|F7〉 = 1
Z7

[
−2iγ +

√
U2 − 4γ2

U
|01; 10〉+ |10; 10〉

]
≈0.71eiφ7

(
|2000〉 − |0200〉

)
+ 0.32eiψ7

(
|1001〉 − |0110〉

)
, (2.43)

|F8〉 = 1
Z8

[
2iγ −

√
U2 − 4γ2

U
|01; 01〉+ |10; 01〉

]
≈0.71eiφ8

(
|0020〉 − |0002〉

)
+ 0.31eiψ7

(
|1001〉 − |0110〉

)
, (2.44)

|D9〉 = |00; 11〉 = |D1〉 ⊗ |D2〉

=1
2
(
|1010〉 − |1001〉 − |0110〉+ |0101〉

)
(2.45)

|F10〉 = 1
Z10

[
−2iγ −

√
U2 − 4γ2

U
|01; 10〉+ |10; 10〉

]
≈0.51eiφ10

(
|1010〉 − |0101〉

)
+ 0.49eiψ10

(
|1001〉 − |0110〉

)
, (2.46)

|F11〉 = 1
Z11

[
2iγ +

√
U2 − 4γ2

U
|01; 01〉+ |10; 01〉

]
≈0.49eiφ11

(
|1010〉 − |0101〉

)
+ 0.51eiψ11

(
|1001〉 − |0110〉

)
, (2.47)

|B12〉 = 1
Z12

2iγ − 4J −
√
U2 + 16

(
J − iγ

2

)2

√
2U

(
|00; 20〉 − |00; 02〉

)
+ |11; 00〉


≈0.17eiφ12

(
|2000〉+ |0200〉 − |0020〉 − |0002〉

)
+ 0.67eiψ12

(
|1100〉 − |0011〉

)
, (2.48)

|B13〉 =b1
(
|00; 20〉+ |00; 02〉

)
+ b2 |02; 00〉+ b3 |20; 00〉

≈0.22eiφ13
(
|2000〉+ |0200〉+ |0020〉+ |0002〉

)
+ 0.80eiψ13

(
|1100〉+ |0011〉

)
+ 0.35eiϕ13

(
|1010〉+ |1001〉+ |0110〉+ |0101〉

)
, (2.49)
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|B14〉 =a1
(
|00; 20〉+ |00; 02〉

)
+ a2 |02; 00〉+ a3 |20; 00〉

≈0.14eiφ14
(
|2000〉+ |0200〉+ |0020〉+ |0002〉

)
+ 0.46eiψ14

(
|1100〉+ |0011〉

)
+ 0.61eiϕ14

(
|1010〉+ |1001〉+ |0110〉+ |0101〉

)
. (2.50)

Exact forms for states |W6〉, |B13〉 and |B14〉 in the collective basis |B4D3;D1D2〉 are omitted
for simplicity. Note that due to non-Hermiticity of the Hamiltonian, the eigenstates are not
orthonormal, but instead biorthonormal [105]. The pairwise exchange symmetry can be read
from the states written in the Fock-basis: States |W6〉, |D9〉, |B13〉 and |B14〉 are symmetric
and states |W5〉 and |B12〉 antisymmetric. Asymmetry of the transmon parameters, such as
waveguide and direct coupling removes the symmetry of states |W5〉 and |W6〉, which explains
why both states are visible roughly at the same phase in Fig. 4.25. In the approximated
states in the Fock-basis we have neglected the base vectors with amplitude smaller than 0.1.
The exact values for the phases φi, ψi and ϕi are omitted for clarity. From these forms it
is evident that the states |W5,6〉 and |F7,8〉 consist mainly of states with doubly occupied
transmons, i.e. these states do not exist for two-level systems. Further, also the highest states
|B12〉,|B13〉,|B14〉 contain non-negligible amount of doubly occupied transmons, which is also
not possible for qubits.

│B14〉

│D3〉

│B13〉│B12〉│F7(8)〉│W5(6)〉 │F10(11)〉

│G〉

│D9〉

│B4〉│D1(2)〉

│B14〉

│D3〉

│B13〉│B12〉│F7(8)〉│W5(6)〉 │F10(11)〉

│G〉

│D9〉

│B4〉│D1(2)〉

a b

Figure 2.7: Transition symmetries. The state manifolds consist of symmetric (blue) and
antisymmetric (red) superposition states, as well as states that have no symmetry with respect
to the λ/2 distance but rather a local symmetry (turquoise) within the pairs. a Possible
transitions for an antisymmetric drive or decay (red arrows). This resembles the waveguide
symmetry, thus the red transitions can be driven by the waveguide field. b Possible transitions
for a symmetric drive or decay (blue arrows). These transitions cannot be accessed by the
waveguide field, meaning they do not radiate into the waveguide but also cannot be controlled
by a propagating drive field. The local sideports can drive both red and blue transitions.

The dissipative dynamics cause transitions between the manifolds. We choose to assign
a symmetry with respect to the exchange of the pairs which is defined by the operator
P̂ = |n3n4n1n2〉 〈n1n2n3n4|. The symmetry defines which decay processes occur and which
collective drive symmetry is needed to induce transitions between the states. If the pair-
exchange operator leaves a state unchanged, i.e. P̂ |ζ〉 = |ζ〉 the state is symmetric; if the
state obtains a sign change, i.e. P̂ |ζ〉 = − |ζ〉 it is antisymmetric. We show the symmetry
of the superposition states and transitions in Fig. 2.7, where we use the same coloring of
the state symmetries as in Fig. 2.6. Here, the symmetric and antisymmetric transitions are
depicted as defined for operator P̂ . A drive that can realize antisymmetrical and symmetrical
collective phases allows to drive the scheme depicted in Fig. 2.7a, as well as Fig. 2.7b. In
the physical realization of our waveguide QED system the collective system is either driven
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through the waveguide, which is bound to the antisymmetric drive for a pair-separation of λ/2
or by two local access points that are located at the sites of the two pairs. The locality allows
to manually set a specific phase relation between the sites, that effectively exposes the system
to a collective drive phase that can be set by the microwave control electronics. In particular,
this means that we are able to drive the dark state |D3〉, that cannot be accessed thorough
the waveguide but in return promises a long lifetime due to the radiative decay γD = 0.

The width of the arrows in Fig. 2.7 visualizes the relative magnitude of the state decay rate
which also indicates how well a drive with matching symmetry induces transitions between
them. They are not necessarily related to the decay rate because the available mode envi-
ronment is set by the antisymmetric waveguide phase. The non-zero decay rates are listed in
Tab. 2.1. Thus, we can conclude that we can indeed isolate specific states that do not have a
decay rate, such as the dark state |D3〉 but are still able to access them by a symmetric drive.
In order to not limit the dark state decay time to the losses into the driving channel the ports
have to be weakly coupled to the transmons.

Initial state Final state Decay rate/γ̄
|B4〉 |G〉 4.0
|W5〉 |D3〉 0.33
|W5〉 |B4〉 0.32
|W6〉 |D3〉 0.34
|W6〉 |B4〉 0.36
|F7〉 |D1〉 1.8
|F8〉 |D2〉 1.9
|F10〉 |D1〉 1.9
|F11〉 |D2〉 2.0
|B12〉 |D3〉 3.2
|B12〉 |B4〉 0.61
|B13〉 |B4〉 2.9
|B14〉 |D3〉 0.02
|B14〉 |B4〉 4.2

Table 2.1: Decay channels in the two-excitation manifold. Decay rates between indi-
vidual states in the units of average individual transmon coupling to the waveguide. We have
neglected transitions with a rate smaller than 0.01.

Driving the Dark Qubit

After solving the stationary master equation to obtain the collective spectrum of the one-
and two-excitation manifold we investigate the system in the presence of a coherent drive. In
particular, we want to find a drive that can excite the dark state |D3〉. In the frame rotating
with the drive frequency ω, the drive Hamiltonian reads

Ĥd/~ = Ω
2
[
eiφ (â1 + â2) + â3 + â4 + h.c.

]
, (2.51)

where Ω is the amplitude of the drive and φ is the phase difference between pairs. The phase
φ changes the symmetry with respect to the exchange of the pairs, but its is always symmetric
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with respect to the exchange of transmons inside the pairs. For the waveguide drive the phase
relation is limited to the λ/2 condition thus φ = π. To address the system with arbitrary
drive phase relations it is necessary to engineer local control at the sites. This means that
the drive is not allowed to excite the waveguide, otherwise the symmetry is always bound to
φ = π. In the theory, we assume that we can set arbitrary phases φ.

Two local sideports, like the ones that we engineered in our setup, allow to control the sym-
metry of the drive and thus couple different states in the neighboring manifolds by altering
the phase between the pairs. For small amplitudes, the drive acts as a perturbation and does
not change the eigenstates of the effective Hamiltonian, thus the frequencies and decay rates
of Fig. 2.6 are still valid. The assumed drive acts with equal amplitude and phase within the
pair, however in the experiment it has an amplitude gradient Ωδ. This introduces an addi-
tional driving term that is always antisymmetric with respect to the exchange of transmons
within the pair

Ĥd,asym/~ = Ωδ

4
[
eiφ (â1 − â2) + â3 − â4 + h.c.

]
. (2.52)

The phase and amplitude gradient over the pairs explains why we are able to excite the local
dark states |D1〉 and |D2〉 in Fig. 4.25 and Fig. 4.12.
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Figure 2.8: Simulated ground state population after the Rabi pulse. The dynamics
of the system is solved numerically from the master equation while altering the phase and
amplitude of the driving Hamiltonian. After the Rabi pulse, lasting 240 ns, the ground state
population is calculated. The Rabi pulse is not perfect, since the ground state population does
not go to zero. On the right side we sketch the dark state (top) that is used to store quantum
information and controlled by the variable-phase drive. The readout state (bottom) decays to
the ground state due to the waveguide environment, such that the scattering properties of the
transition can be utilized to read out the ground state population.
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A transition amplitudes of the ground state |G〉 to the non-local dark state |D3〉 and bright
state |B4〉 depend on the phase φ of the driving Hamiltonian Ĥd as [87]

|G〉 → |D3〉 : ~Ω
2
(
1 + eiφ

)
, (2.53)

|G〉 → |B4〉 : ~Ω
2
(
1− eiφ

)
. (2.54)

By numerically simulating the effect of the drive on the qubit system we observe periodically
Rabi-oscillations between |G〉 and |D3〉 in Fig. 2.8 when the amplitude of the drive field Ω is
increased and the phase relation matches φ = 2nπ (n ∈ Z). For an antisymmetric drive with
odd integer multiple φ = (2n − 1)π, we only drive the bright state |B4〉 which decays very
rapidly to the ground state with the rate ΓB,4 = 4Γ, see table 2.1. For phases that are neither
fully symmetric nor antisymmetric we drive both states simultaneously, where the respective
drive strength is weakened for imperfect antisymmetric phases.

Dark State Coherence

The dark state |D3〉 forms a decoherence-free subspace in the Hilbert space of the coupled
transmon system by effectively decoupling from the waveguide drive and noise that causes the
states to relax back to the ground state |G〉. They have the ability to be utilized to construct
a universal quantum computation platform in waveguide QED [25]. A coupled many-body
system is not only subjected to the individual transmon decoherence mechanism but instead
the lifetime T1 and coherence time T2 of the collective dark state |D3〉 are affected by additional
noise contributions. The master equation in the zero and one-excitation manifolds can be
solved analytically for identical transmon parameters. The correlations between the ground
state and dark state evolve in time according to

ρ03(t) = ρ03(0)e−it(ω+J)e−t
γnr+γφ+Kφ

2 , (2.55)

from which we identify the characteristic coherence time

T2 =
(
γnr + γφ +Kφ

2

)−1
. (2.56)

The lifetime T1 is actually measured using the ground state population. The time evolution is
solved from the master equation by assuming that the system is initially in the dark state

1− p0(t) ≈ e−t
(
2γ+γnr+

γφ
2 −

1
2

√
16γ2+4γγφ+γ2

φ

)
, (2.57)

from which we recover the characteristic energy decay time

T1 =
(

2γ + γnr + γφ
2 −

1
2
√

16γ2 + 4γγφ + γ2
φ

)−1
. (2.58)

Thus, we conclude that the coherence time of the dark state |D3〉 depends on the non-radiative
decay γnr as well as pure local and global dephasings γφ and Kφ. Interestingly also the lifetime
depends on the local dephasing. This happens because the local dephasing causes transitions
from the dark state |D3〉 to the bright state |B4〉, which decays through the waveguide.
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Even though local dephasing also causes transitions to e.g. the local dark states |D1〉 and
|D2〉, they do not decay into the waveguide thus do not influence T1. In addition, flux noise
that affects the transmons causes unintentional frequency tuning. In the worst case one
transmon is detuned to higher frequencies and the other to lower frequencies, which causes
symmetry imperfections and a finite waveguide coupling linewidth, similar to the observations
in Fig. 2.4.



CHAPTER 3
Experimental Techniques

While many microwave components are commercially available, the key building blocks of
superconducting waveguide QED - waveguides and artificial atoms - are individually designed
and fabricated such that the parameters can accurately be tailored to the needs of the experi-
ment. The waveguide middle section is fabricated in the mechanical workshop of the Institute
of Quantum Optics and Information (IQOQI) where it is milled out of a block of high purity
copper. It serves as the sample box, as well as the propagation channel for the microwave
photons. After introducing the field characteristics of the waveguide in the first section, we
focus on the superconducting qubit design and fabrication. The Quanten-Nano-Zentrum Tirol
cleanroom facility was opened in the beginning of 2018 where we started to implement the
qubit fabrication by adapting the 3D transmon recipe from the group of Ioan Pop at the
Karlsruher Institute of Technology. The last section gives an overview on how the transmon
sample is mounted into the waveguide and cooled down to millikelvin temperatures in a dilu-
tion refrigerator. The necessary isolation from the environment imposes critical requirements
on the wiring that typically starts at room temperature and is routed to the base plate. We
then briefly discuss the spectroscopic and pulsed measurement setup to understand the dif-
ferent signal generation and processing schemes. Primarily, the choice of the setup depends
on the studied timescales.

3.1 The Rectangular Waveguide

Rectangular waveguides for microwave frequencies are hollow metal tubes with conducting
walls. With the development of microwave sources, such as the Barkhausen-Kurz tube and the
split-anode magnetron, interest in low-loss transport of microwaves began in the 1930s [106].
The dimensions of the hollow core are on the same order as the largest mode wavelength that
can be transmitted, resulting in different cutoff frequencies for different waveguide sizes. Each
mode has a specific polarization and can be categorized in TE (transverse electric) and TM
(transverse magnetic) modes. TEM (transverse electromagnetic) modes require a second con-
ductor and thus do not propagate in a rectangular waveguide. For practical reasons the most
common standardized waveguides range from frequencies between 320 MHz to 330 GHz with
corresponding inner dimensions 584 mm× 292 mm to 0.9 mm× 0.4 mm1. The lowest frequen-
cies where current quantum circuits are currently operated are about 100 MHz for fluxonium
modes [107] and usually do not go above 16 GHz due to frequency-optimized commercial mi-
crowave components. This means that rectangular waveguides are much bigger than their

1https://en.wikipedia.org/wiki/Waveguide_(radio_frequency)

39
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integrated transmission line analogue. However there are ideas to combine the advantages of
both approaches [108].

y
z

x

a

b

c

a b

22.9 mm

Figure 3.1: Rectangular waveguide. a Schematic of a rectangular waveguide. The electrical
field lines of the fundamental mode TE10 are parallel to the y-axis and therefore perpendicular
to the propagation direction z. Different colors of the propagating field indicate the changing
phase through the waveguide. b The middle section of the waveguide is milled out of a copper
block where the inner dimensions determine the cutoff frequencies. Here only the largest width
of a = 22.9 mm results in the fundamental mode cutoff frequency f10=6.546 GHz. The clamps
on top of the waveguide thermalize the qubits and have two coils attached that can be used
to change the emission frequency of the qubits.

The design of the waveguide is defined by two parameters that determine the cutoff of the
propagating modes: the width a and height b of the inner hollow volume in Fig. 3.1a. The
finite length c of the waveguide middle section, shown in Fig. 3.1b requires the usage of
adapters that have to transform the waveguide impedance Z ∼ 500 Ω to the impedance of
the coaxial lines Z = 50 Ω. Imperfections in the impedance matching cause standing waves
inside the waveguide that lead to deviations from the following analytical description. In
the rectangular waveguide, we can distinguish modes with no electrical field (TE) and no
magnetic field (TM) in propagation direction. Modes with no electromagnetic field (TEM) in
propagation direction need a second conductor and can therefore not be excited. TE modes of
the rectangular waveguide have no electrical field component in the direction of propagation
Ez = 0, while the magnetic field Hz(x, y, z) = hz(x, y)e−iβz has to fulfill the reduced wave
equation [88] (

∂2

∂x2 + ∂2

∂y2 + k2
c

)
hz(x, y) = 0. (3.1)

Here we introduced the cutoff wave number kc =
√
k2 − β2 with wavevector k and the prop-

agation constant

β =
√
k2 − k2

c =
√
k2 −

(
mπ

a

)2
−
(
nπ

b

)2
, (3.2)
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where m,n εN0. The waveguide TEmn modes obtain transverse field components

Ex = jωµnπ

k2
c b

Amn cos mπx
a

sin nπy
b
e−jβz,

Ey = −jωµmπ
k2
ca

Amn sin mπx
a

cos nπy
b
e−jβz,

Hx = jβmπ

k2
ca

Amn sin mπx
a

cos nπy
b
e−jβz,

Hy = jβnπ

k2
c b

Amn cos mπx
a

sin nπy
b
e−jβz.

(3.3)

Here where Amn are arbitrary amplitude constants and j is the imaginary unit. For a mode
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Figure 3.2: Characteristic properties of a WR90 waveguide. a The group velocity
v of a microwave travelling through the waveguide. For high frequencies it approaches the
vacuum speed of light c = 3× 108 m s−1. b The wavelength inside the waveguide changes very
rapidly close to the cutoff frequency. c The wave impedance slowly approaches the free space
impedance Z0 = 376 Ω. d The propagation constant visualizes the non-linear dispersion of the
rectangular waveguide, especially around the cutoff.

to propagate, the wavevector k has to be larger than the cutoff wavevector kc

k > kc =
√(

mπ

a

)2
+
(
nπ

b

)2
. (3.4)

For k < kc the modes correspond to evanescent waves whose fields cannot propagate through
the waveguide. Conditioned on the length c of the waveguide and the applied power it is
still possible to experimentally measure transmission below the cutoff and investigate bound
state physics [78]. The mode with the smallest cutoff frequency is called the dominant or
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fundamental mode. For a > b the fundamental cutoff frequency only depends on the width a,
the permittivity ε and the permeability µ.

fc,10 = 1
2a√µε. (3.5)

The middle section of the rectangular waveguide (without the coaxial adapters), shown in
Fig. 3.1b is fabricated from oxygen-free high purity copper with inner volume dimensions
10.2 mm× 22.9 mm× 100 mm, such that the fundamental cutoff frequency fc,10 = 6.546 GHz
only depends on the longest extension a = 22.9 mm perpendicular to the propagation direction,
the vacuum permittivity ε and permeability µ. This mode has a polarization of the electric
field that is parallel to the y-axis and a sinusoidal field amplitude with the maximum at
the center. This is important for the coupling strength between the mode and a dipole
antenna, such as the transmon qubit. The next higher mode cutoffs are the TE20 mode
at fc,20 = 13.091 GHz and TE01 mode at fc,01 = 14.696 GHz. For frequencies above the
cutoff, the electromagnetic mode propagates through the hollow core of the waveguide with
propagation constant β =

√
k2 − k2

c , defined by difference of the wavevector k = ω
√
εµ and

the cutoff wavevector kc = π/a. For real β the wave impedance

ZTE = Ex
Hy

=
√
µ

ε

k

β
(3.6)

is also real and relates the transverse electric and magnetic fields. The wavelength in the
waveguide is defined as

λ = 2π
β
, (3.7)

which is in general larger than the wavelength of a plane wave in vacuum λ = 2π/k. The
characteristic properties for such a rectangular waveguide are plotted in Fig. 3.2. Especially,
close to the cutoff frequency the dispersion is not linear, enabling the creation of chirped
pulses to address individual qubits in the waveguide [109].

3.2 Finite Element Simulation of Linear Circuits

Simulating classical circuits of dielectrics and conducting materials with a finite element sim-
ulation software has become a standard tool to investigate the sample behavior before the
costly physical construction. The simulation already gives approximate quantities of the
defining parameters, even for complicated circuits, where it can be difficult to find analyti-
cal solutions. Figure 3.3a shows the Ansys HFSS2 model of a rectangular waveguide QED
setup that consists of a perfect conducting box with a vacuum hollow core of dimensions
10.2 mm× 22.9 mm× 100 mm to achieve the fundamental cutoff frequency fc,10 = 6.546 GHz.
The ends of the box are terminated with two waveports that send waves from one side of the
waveguide to the other and are used to extract quantities like S parameters, etc.

The qubit substrate is modeled as a sapphire3 box with dimensions 16 mm×2 mm×0.33 mm,
where the thickness of 0.33 mm is specifically for the 2" sapphire wafers that were used in

2https://www.ansys.com/products/electronics/ansys-hfss
3from the HFSS material database
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Figure 3.3: Ansys HFSS simulation. a The model consists of a box containing the electro-
magnetic propagating modes and the transmon qubits (inset). The orientation of the dipole is
parallel with the electric field, for which the magnitude is plotted. b For a single qubit, we can
extract the qubit coupling to the waveguide and compare it to the measured values. We can
see that the simulation that also considers the resonances of the other qubits is shifted more
towards the measured values. c The direct capacitive coupling of two transmons is obtained
from an eigenmode simulation, by changing the lumped inductance of one transmon.

the fabrication. Typically we also use 2" and 4" wafers with a thickness of 0.43 mm. The
width and height of the substrate can be chosen arbitrarily and depend on the design of
the qubit and the anticipated mounting procedure in the sample box. For the transmon
model it is helpful to use practical design parameters, e.g. from Refs. [11, 34, 84, 110]. Here,
the transmon pads are modeled by perfectly conducting sheets placed on the surface of the
substrate with dimensions 0.4 mm × 0.5 mm (width x height), separated by a 0.2 mm gap,
effectively forming a 1.2 mm long dipole antenna parallel to the electrical field component of
the propagating waveguide field. The pads are connected by a lumped element inductance LJ
that models the Josephson junction which is the dominant contribution of the full transmon
inductance. The second transmon is located 1 mm away from the first transmon such that
they sit symmetrically around the center of the waveguide.

After simulating the model with the driven modal solution type of HFSS the complex S pa-
rameters are extracted. The transmon antenna dipole ~d is designed parallel to the electrical
field ~E, such that the the product ~d · ~E becomes one dimensional and yields the coupling
strength between the waveguide field and the qubit. This dipole-coupling is responsible that
the electromagnetic signal of the waveguide interacts with the qubit and changes the trans-
mission around the resonance frequency of the qubit. Changing the antenna design or moving
it horizontal to the propagation direction influences the coupling strength [84]. The emerging
resonance in the simulated waveguide transmission S21 between port 1 and port 2, that are
located on opposite faces along the propagation direction, gives direct access to the coupling
strength between the qubit and the waveguide mode. The initial unit transmission decreases
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due to scattering with the fundamental transmon transition. Note, that the transmon qubit
is modeled as a harmonic oscillator in HFSS and does not capture typical transmon char-
acteristics like the anharmonicity or power saturation. The resonance is treated similar to
the experimental data, such that we can extract the resonance frequency f01 and coupling
quality factor Qc from the circle-fit routine [111, 112], that we use to calculate the radiative
linewidth γr = 2πf01/Qc. The transmon frequency f01 = 1

2π
√
LC

is changed by varying the
value of the lumped inductance LJ ≈ L. The coupling for a fixed transmon geometry is
extracted at different frequencies and plotted against the resonance frequency in Fig. 3.3b.
Compared to the measured radiative linewidths the simulated values are overestimated. This
can be corrected when we model a scenario that is closer to the measured sample by includ-
ing the other transmons in the simulation. In the measurement the resonance frequency of
the neighboring qubit was f2 = 8.7 GHz, while the distant qubits resoannce frequencies were
f3 = 6.8 GHz and f4 = 6.5 GHz. By choosing the corresponding inductances in the simulation
we see that this brings the values closer to the measured coupling rates. With knowledge of
the inductance LJ and the extracted resonance frequency the shunt capacitance of the pads
is extracted C = 1

(2πf)2·LJ = 1
(2π·8.82 GHz)2·5 nH = 64 fF.

The eigenmode solver of HFSS offers a fast way to extract the capacitive coupling between
two adjacent qubits. By assigning a constant lumped inductance for one qubit and changing
the inductance of the other qubit we simulate the same model as depicted in Fig. 3.3a around
a frequency where no other modes are present. In this case the waveguide is kept at the
same size, the waveports are removed and the constant frequency qubit is set to 7.7 GHz.
When tuning the other qubit in resonance by changing its inductance the avoided crossing
in Fig. 3.3c is observed. By fitting the two branches we can find the frequency where the qubits
are resonant, which is at the minimal distance of the branches. The splitting 2J = 85 MHz
yields the coupling rate Jij for the qubits, that we also simulated with the quantum optics
simulation software QuTiP [26] in Fig. 2.4.

3.3 Transmon Qubits

The finite element simulation in Sec. 3.2 already provides transmon parameters by modeling
the qubits as harmonic oscillators. However, the key element of the transmon is a non-
linear Josephson junction that makes the circuit anharmonic. When designing transmon
qubits for 3D waveguide QED experiments, there are multiple parameters to optimize for:
the resonance frequency f0, the anharmonicity α, the transmon ratio EJ/EC , as well as the
range of tunability for double junction transmons with minimal frequency fmin and maximal
frequency fmax. Before describing the fabrication process of the transmons in Sec. 3.3.2 we
calculate and summarize the parameters for the fabrication in Sec. 3.3.1.

3.3.1 Design Parameters

The transmon parameters are mainly defined by the shunt and junction capacitances and the
inductance of the Josephson junction. From HFSS simulation, where the transmon antenna
consists of two aluminum pads of size 400 µm × 500 µm, we extract the shunt capacitance
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Figure 3.4: Transmon qubit. a The physical qubit consists of a shunt capacitance of two large
metallic pads and two Josephson junction, in order to enable flux tunability. The Josephson
junction is created by two metallic electrodes (blue and orange) that are separated by an
insulating oxide barrier (grey). b Transmons with two junctions in parallel are flux tunable.
The minimum frequency of identical critical currents, i.e. d = Ic,1 − Ic,2

Ic,1 + Ic,2
= 0 goes to zero,

while different critical currents cause a tuning minimum that can be useful to decrease the
sensitivity to flux noise. The critical current Ic is defined by the junction area and the oxide
barrier.

CS = 64 fF. The second main contribution of the transmon capacitance CΣ is the junction
capacitance arising from the metallic electrodes and the insulating oxide barrier, schematically
sketched in Fig. 3.4a. The barrier thickness is assumed to be t = 1.5 nm [113, 114]. We
approximate the junction capacitance as a parallel plate capacitor with area AJ vacuum
permittivity ε0 and dielectric constant εr,AlOx ≈ 10 [110, 115] such that

CJ = ε0εr,AlOx
AJ
t
. (3.8)

To make the transmon flux-tunable we incorporate two Josephson junctions that are arranged
in a parallel configuration at the center between the transmon pads, see Fig. 3.4a. To decrease
the sensitivity to flux noise and obtain a low flux-sweetspot we design them with two different
junction areas AJ,1 = 200 nm× 1400 nm and AJ,2 = 200 nm× 500 nm. The different electrode
areas and the shunt electrodes yield the total transmon capacitance

CΣ = CS + CJ,1 + CJ,2 = 64 fF + 16.5 fF + 6 fF = 86.5 fF, (3.9)

corresponding to a charging energy EC = 224 MHz/h. The target frequency of the transmon
is set to f01 = 8.7 GHz, such that the resulting target Josephson energy is determined by

EJ = (hf01 + EC)2

8EC
= 44.41 GHz/h. (3.10)

This means that we have to distribute the total critical current Ic,tot = 2πEJ
Φ0

according to the
area ratio of the split-junction. Here, Φ0 = 2e/h is the magnetic flux quantum, e the electron
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charge and h the Planck constant. The junction asymmetry d = Ic,1 − Ic,2
Ic,1 + Ic,2

6= 0 causes the

extra term in Eq. (1.24), which effectively reduces the tuning range, sensitivity to flux changes
and provides a low flux-sweetspot, as shown in Fig. 3.4b. The junction critical currents are
then

Ic,tot = 2πEJ
Φ0

= 89.42 nA (3.11)

Ic,2 = Ic,tot
AJ,1/AJ,2 + 1 = 23.88 nA (3.12)

Ic,1 = Ic,tot − Ic,2 = 65.54 nA (3.13)

Figure 3.4b shows the resulting transition frequency of the transmon f01 = E01/h as a function
of the normalized external flux Φext/Φ0. The total transmon energy E01 is given by the
equation

E01 =

√√√√8EC
Φ0(Ic,1 + Ic,2)

2π cos πΦext

Φ0

√
1 + d2 tan2 πΦext

Φ0
− EC . (3.14)

The designed qubit is tunable in the range 5.9-8.7 GHz corresponding to ratios EJ/EC =
96− 198, well within the transmon regime.

Typically we probe the resistance from one pad to the other at room temperature to determine
the critical current Ic of the Josephson junction before cooling down the device. At room tem-
perature, the tunnel barrier behaves like an ohmic resistor that dominates over the resistance
of the metal such that the maximal Josephson energy EJ can be estimated by measuring the
normal state resistance of the junction Rn, which is related to the critical current Ic,tot by the
Ambegaokar-Baratoff formula [110, 116]

IcRn = π

2e∆(T ) tanh
(∆(T )

2kBT

)
, (3.15)

with the Boltzmann constant kB and the electron charge e. The equation relates the critical
current and normal-state resistance only by the material properties and temperature, where
∆(T ) is the superconducting energy gap at temperature T . For T = 0 the Ambegaokar-
Baratoff Eq. (3.15) simplifies to

IcRn = π∆c(0)
2e , (3.16)

where ∆c(0) = 180µeV was extracted from the first transmons that were fabricated in the
QNZT cleanroom. Rn was measured just before cooling down the samples and compared
to the measured resonance frequencies and anharmonicities. ∆c(0) therefore serves as a di-
rect conversion parameter between Rn and the maximal transition frequency f01. Typically
we observe an increase of the normal state resistance of up to 10% in the first week after
fabrication. Thus, for a target transition frequency of f01 = 8.7 GHz and charging energy
EC = 224 MHz/h the normal state resistance is

Rn = π∆c(0)
2eIc

= π · 180µeV
2e · 89.42 nA = 3.16 kΩ. (3.17)

During the first cooldown of the transmon samples we extracted the maximal frequency
presented in table 3.1 and compared to the calculated value by room temperature resistance
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Rn (kΩ) f01,max (GHz) f01(Rn) (GHz)
Q1 3.11 8.69 8.67
Q2 3.12 8.66 8.72
Q3 3.26 8.77 8.58
Q4 3.12 8.73 8.41

Table 3.1: Rn to f01 conversion. The measured room temperature resistance is used to
calculate the transition frequency f01(Rn), which can then be compared to the measured
value f01,max. To calculate the expected resonance frequencies f01(Rn) we used the extracted
charging energies EC from the anharmonicity measurement in Sec. 4.1.

measurements. We notice a spread in the room temperature resistance, as well as in the
maximal resonance frequencies. Qubit 3 shows a higher resistance compared to the others and
surprisingly also a higher resonance frequency. We attribute the inaccuracies to the changes
in the oxide barriers during the cooldown, that can be different for the individual Josephson
junctions. In the course of the experiments the samples were cooled down several times where
we additionally observe that the maximal frequency decreases with each cooldown. To avoid
any damaging of the samples we only probed the room temperature resistance before the
initial cooldown. The flux maps presented in Fig. 4.2 are recorded after several cooldowns
and show that the maximal frequency of the transmons is significantly lower compared to the
values in table 3.1 corresponding to the first cooldown.

3.3.2 Fabrication of 3D Transmons

a b

© ÖAW/Daniel Hinterramskogler © ÖAW/Daniel Hinterramskogler

Figure 3.5: Wafer scale fabrication in the QNZT cleanroom facility. a The processed
wafer before dicing the qubit chips into pieces (cut-lines indicated by the right angles). b Two
wafers in a custom-designed wafer boat.

The transmons are fabricated in the facilities of the Quanten-Nano-Zentrum Tirol (QNZT),
that was opened in 2018. The transmon qubit design is patterned into a bi-layer resist
stack by electron-beam lithography with a Raith eLINE Plus 30 kV. The initial goal was to
adapt the 3D transmon design from the Pop group at the Karlsruher Institute of Technology
(KIT), which uses sapphire substrates. In hindsight, using a conductive substrate, e.g. high-
resistivity silicon that does not require an additional anti-charging layer simplifies the process
development and could have saved some time.
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Wafer Preparation

The fabrication is done on c-plane sapphire (0001) disks from Crystec (Kyocera) with thickness
330 µm ± 25 µm and diameter 50.8 mm, depicted in Fig. 3.5a (already containing the circuit
structures). For our purposes the 2-inch wafers have proven to be a good trade-off between
costs and yield, thus we process the full wafer to obtain multiple chips in a single fabrication
run and then select the transmons with the best parameters for the cooldown from room-
temperature measurements. For better orientation during the fabrication they have a 16 mm
standard flat and an engraved serial number (e.g. KC001351). The internal convention to
use the backside of the wafer for the circuit structures helps to reduce errors, especially
when fabrication steps are done by different people. The wafers are polished on both sides,
therefore it is difficult to distinguish between the front and backside. If you can read the serial
number you need to turn the wafer upside down to look at the side that is being processed.
Alternatively, high-resistivity silicon is a commonly used substrate option due to the low
dielectric loss and extensive use in semiconductor integrated circuits.

The initial cleaning step of the sapphire wafers is done in a mixture of sulfuric acid (H2SO4)
and hydrogen peroxide (H2O2), known as piranha solution. The etching removes organic
residues from the substrates such that the initial processing conditions depend less on the
wafer-handling before arrival in the cleanroom. The mixture is a strong oxidizer, thus will re-
move most organic matter from the sapphire surface but also adds OH groups, making it very
hydrophilic. As we usually do the cleaning for a few (∼10) wafers on a specific day, it is impor-
tant to consider the time difference between the cleaning and the next processing step. The
surface conditions change during storage and the hydrophilicity weakens. In the past, we could
only detect the increased hydrophilicity when we added an oxygen plasma before spinning the
resist and after piranha cleaning. There, the resist no longer stayed on the wafer surface but
immediately crept under it due to the reduced surface tension. The piranha cleaning is done
in a large beaker using the quartz wafer boat, depicted in Fig. 3.5b. It was fabricated at the
"Center for Chemistry and Biomedicine (CCB)4". With this boat it is possible to clean 5 wafers
simultaneously. It is important that the wafers are already reasonably clean and completely
free of solvents to avoid very heavy reactions and possible explosions or overflowing. Filling the
large beaker with 300 ml sulfuric acid allows to almost fully submerge the wafers. Then 100 ml
of hydrogen peroxide is added. The reaction is exothermic and the solution gets hot. The
wafers are cleaned for 10 min. If the reaction gets weaker, the beaker can be put on a hotplate.
The Wikipedia article5 points out the risks and explains the handling procedure of piranha
solutions. After 10 min the wafer boat is transferred into a second beaker that is filled with
deionized water to rinse off the piranha solution. One by one, the individual wafers are taken

4https://www.uibk.ac.at/aatc/glasblaeserei.html
5https://en.wikipedia.org/wiki/Piranha_solution
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out of the water, rinsed with deionized water, dry blown and put into wafer boxes for storage.
Piranha cleaning

Chemical compound H2SO4 : H2O2 (3:1)
Protocol Fill beaker with 300 ml H2SO4

Submerge wafers using the quartz holder
Add 100 ml H2O2
Solution gets hot and starts boiling
Etch 10 min, stir with wafer holder if reaction gets weaker or use
hotplate
Transfer holder into second beaker, filled with deionized water, rinse,
blow dry with N2

Resist and Anti-Charging Layer

Coating the surface of the substrate with electron beam sensitive resist allows to imprint pat-
terns with an electron beam lithographic (EBL) machine. Resists, like polymethyl methacry-
late (PMMA) can be positive resists, i.e. when they are exposed they undergo a chain scission
and become soluble. Negative resists are based on free radicals that cross-link when they are
exposed and become insoluble.

For the transmon fabrication we spincoat a bi-layer stack consisting of a 1000 nm thick copoly-
mer bottom layer MMA(8.5)MAA EL13 and a 240 nm thick PMMA top layer 950 PMMA
A4 onto the substrate. The top layer is used to define the main structures while the bottom
layer has a higher sensitivity, such that it can also be exposed without exposing the top layer.
This higher sensitivity is utilized for designing Josephson junctions. When only the bottom
layer resist is removed next to a trench, the top layer serves as a shadow for a directional
metal evaporation, depicted in Fig. 3.6. The angle of the evaporation then determines if the
metal reaches the substrate or not. For a specific resist the thickness is mainly defined by the
rotation speed of the spin coater which can be taken from the spin curve, usually provided
by the manufacturer but also depends on airflow, applied quantity and solvent evaporation.
Thus the thickness has to be calibrated and is always measured and logged. To achieve the
desired resist thicknesses with the Suess Microtec LabSpin6, we spin the EL13 copolymer
with 1500 rpm and the A4 PMMA with 2000 rpm. Spinning the resist is the most vulnerable
step for contamination and requires a cleanroom. Particles or bubbles in the resist cause
imperfections in the resist layer. In order to avoid them it is important to clean the substrate
before spinning and remove bigger particles by blowing the surface with a N2 gun. The resist
amount should not vary and the pipettes should not be emptied completely to avoid resist
bubbles. To reduce the contamination of the large resist bottles we fill the resist into smaller
bottles and load the pipette from there. Nevertheless, the bottles should always be inspected
visually before applying it to the wafer. An unavoidable problem is non-uniform coating due
to the different spinning speed at different radial positions on the wafer and the aggravation
of resist at the edge of the wafer due to surface tension that counteracts the centrifugal force
of the spinning. Those effects can usually be minimized by constraining the design to the
center of the wafer. After each spinning, the wafer is put on the hotplate at 200 °C for 5 min
to bake the resist, which evaporates the solvent and hardens it.
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The resist and the substrate are made from electrically insulating materials. If we would try
and write the structures into the resist using ebeam lithography the sample would accumulate
charges and uncontrollably expose the resist. In order to avoid charging of the sample we
sputter a thin layer of gold on top of the PMMA A4 resist with the Cressington 108 auto
sputter coater. It is also possible to use aluminum as the conductive layer, however the
gold sputtering process takes about 5 min and the aluminum evaporation in the Plassys takes
about 1 h. This is mainly because the Plassys volume needs to be pumped to high vacuum
for an aluminum evaporation in order to prevent the formation of an electrically insulating
aluminum oxide layer. The clamps on the ebeam sample holder are later brought in electrical
contact with the gold layer, so that it is grounded and the sample does not charge. The gold
should be sputtered just before the exposure, as we observed that long storage times lead to
changes in the visual appearance of the sample that we did not investigate any further.

MMA(8.5)MAA EL13 resist spinning
Dynamic dispensing 500 rpm

Spinning speed 1500 rpm
Spinning time 60 s

Hot plate temperature 200 °C
Baking time 5 min

495 PMMA A4 resist spinning
Static dispensing 0 rpm
Spinning speed 2000 rpm
Spinning time 100 s

Hot plate temperature 200 °C
Baking time 5 min

Gold sputtering
Table position All the way down

Ar pressure 0.07 mbar
Current 40 mA

Time 50 s
Remarks Almost see-through blueish layer of gold

Electron Beam Lithography and Resist Development

The exposure of the bi-layer resist is done in a single step using a Raith eLINE Plus lithog-
raphy machine employing its maximum acceleration voltage of 30 kV. The utilized resists are
positive resists, meaning that the areas that are exposed are removed by the development step.
Electron beam lithography is a well established direct write method to pattern design layout
files into resists with a focused beam of electrons. The beam is deflected so that it can move
over the sample and imprint the design file into the resist. The energy dose of the electron
beam that is needed to fully expose the positive resist and make it soluble has to be calibrated
in a dose test when exposing a new design or significantly changing the exposed areas around
a known design. For negative resists we need the calibration to know the energy for causing
crosslinks between the polymer molecules, making them unsoluble. The dose depends on the
utilized substrate, previous metallization, resist and gold layer thicknesses, as well as on the
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Figure 3.6: Bridge-free junction fabrication. a By using a lower sensitivity bottom resist
it is possible to hollow out the top resist and create bridges and overhangs. By using two
angles in the evaporation step, the top and bottom electrode can then be separated by making
sure that only one wire stays on each side after the lift-off of the resist. b SEM picture of
a trench that was written to test the ability to create asymmetric undercuts. The wafer was
then broken and imaged from the side.

accelerating voltage of the EBL system. The acceleration voltage will influence the amount
of forward and backwards scattered electrons. Before the launch of the QNZT cleanroom we
fabricated our circuits in the Center for Functional Nanostructures at the Karlsruhe Institute
of Technology, where the electron beam lithography system has a maximum acceleration volt-
age of 50 kV. In theory, the reduction of acceleration voltage decreases the ability to write
very narrow structures into the resist due to enhanced scattering processes and leads to more
uncontrollable resist exposure. This is especially relevant when the Josephson junction relies
on asymmetric undercuts [117]. Nevertheless, for the dimensions and evaporation angles that
we implemented the process worked reliably.

The large structures in the transmon design are written with the biggest available aperture
(120 µm) in high current mode such that the writing current is about 10 nA and minimizes
the writing time. The small structures including the junction are written with the smallest
available aperture (10 µm) with a writing current of about 40 pA such that the precision is
maximized. It is important to align the apertures with respect to each other to avoid big
offsets of the small and large structures. Small offsets coming from misalignment can be
accounted for by designing overlapping structures.

Directly after the lithography step, the gold is etched away in a Lugol solution, consisting
of potassium iodide with iodine in water and then rinsed in deionized water. Although the
gold layer only fulfills a simple task of making the sample conductive we suspect that it
is responsible for most of the fabrication issues that we experienced in the beginning. The
etching process sometimes left behind some contamination on the wafer that was mainly visible
after the metallization step in the Plassys. We compared the process to a similar process but
using a silicon substrate. There, the contamination did not appear and we conclude that the
contamination is originating from the gold treatment. To minimize the contamination we
found that a combination of sputtering a thin gold layer such that the sample looks only very
slightly blueish, but thick enough to obtain an uninterrupted gold layer. The etching should
be done in a fresh and highly diluted Lugol’s solution, meaning that the readily bought bottles
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should not be exposed to air too long and thinned down with deionized water. We suspect the
formation of potassium carbonate could be a reason for the dirt. Mind that the gold etching
should not take longer than 30 s to avoid that the resist soaks up too much water. This way we
could reduce the contamination to a minimum but the issue should be investigated further.

The resist development in a isopropyl alcohol & water (3:1) solution removes the resist only
where it has been exposed. Here it comes into play that the two resists posses different critical
doses where they are soluble. When only the lower resist is fully exposed next to a trench,
the developer washes out the exposed lower resist from underneath the PMMA, as shown in
Fig. 3.6 and enables the fabrication of Josephson junctions via the Niemeyer–Dolan [118] or
bridge-free [117] techniques.

Electron beam lithography
Machine Raith eLINE Plus

Acc. voltage 30 kV
Base dose 80µC/cm2

Dosefactor (large) 5 (approx.)
Dosefactor (small) 7 (approx.)

Dosefactor (undercut) 2 (approx.)
Aperture (large) 120µm
Aperture (small) 10µm

Gold etching
Solution I2/KI/H2O (1:4:40)

Etch time 10 s
Protocol Put wafer in beaker with Lugol’s solution for 10 s

While taking the wafer out,
rinse with deionized water
Shortly put in a beaker filled with
deionized water and clean the tweezers.
Rinse wafer with deionized water
Blow dry using N2

Resist development
Solution IPA/H2O (3:1)

Temperature 6°C (beaker in chiller)
Time 1min 45 s
Finish Rinse with deionized water and N2 blow dry

Metallization and Lift-Off

After the development the sapphire wafer is covered by a resist mask where only the exposed
areas were removed. In the case where the dose was low enough to only expose the bottom
layer resist the top layer forms an overhang casting a shadow onto the sapphire surface.
An directional aluminum deposition onto the substrate utilizes this PMMA mask to coat
the sample at the exposed areas, while it blocks the metal from reaching the substrate in
unexposed regions. The deposition is done using a Plassys Bestek MEB 550S electron-beam



3 Experimental Techniques 53

a b

400 µm400 µm

Figure 3.7: Optical micrograph of a 3D transmon. a The optical micrograph shows the
rough edges of the sapphire chip that was cut into pieces by a mechanical dicing saw. The
aluminum transmon pads show up as white rectangles. Zooming in further shows the SQUID
loop and the bridge-free junctions. b The same pictures but taken with the dark field of the
microscope. This is especially useful to inspect the chip for contamination as any grain will
show up as a bright spot.

evaporator utilizing a two step shadow evaporation process, shown in Fig. 3.6. The orientation
of the sample is critical for the angle evaporation, so the mounting of the sample must be
done carefully.

The resist development typically leaves behind unwanted resist residues on the sapphire sur-
face. A soft argon/oxygen descum in the Plassys removes the residues, but also a thin layer
of the mask. Thus it should be calibrated properly. Typical advantages of the descum step
are a reduction of junction aging and overall cleaner interfaces. In the region where the resist
trench is narrow enough, the first aluminum evaporation under an angle6 of 25° only deposits
a wire on the substrate if the designed undercut is on the correct side and forms the lead wire
to the junction . Otherwise it is deposited on the resist, see also Fig. 3.6. Then, a controlled
oxidation step is used to create a thin aluminum-oxide layer, where the oxidation time and
pressure control the barrier thickness, which is usually in the range of a few nanometer. The
second aluminum deposition is performed at an angle of −25°, so that a wire is deposited un-
derneath the opposing undercut compared to the first evaporation. This way the Josephson
junction is formed by the Al-AlOx-Al sandwich and is connected only via the upper or lower
electrode to the rest of the transmon circuit after the resist is removed. Even though we evap-
orated the metallic layers that form the transmon structure, the resist is still on the sample
and is also coated with aluminum that has to be removed. The lift-off is done by leaving the
wafer in acetone for a few hours, which dissolves the resist and removes the aluminum that is
not in contact with the substrate surface. For a soft ultrasonic treatment the wafer should be
transferred into another beaker to avoid too many particles in the beaker. The wafer is then
rinsed in isopropyl or ethyl alcohol, followed by deionized water. After the lift-off the wires
that lead to the junction are the only single layer aluminum structure such that they effec-
tively separate the upper and lower half of the transmon through the Josephson junction. The
transmon structure is shown in the micrograph in Fig. 3.7 taken with an optical microscope.

6Tilt angle as defined in the Plassys software.
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Figure 3.8: Josephson junctions. a The Josephson junction separates the top and bottom
part of the circuit. Therefore only the top layer (orange) is connected to the upper circuit
and the bottom layer (blue) to the part on the bottom. b The Josephson junction in a is
fabricated in an array with alternating bottom and top layer connection to create a series that
can be extended to thousands of junctions. c For smaller Josephson junctions the deposited
wires are directly used as the Josephson junction, where only the horizontal orange wire was
deposited underneath a resist bridge.

The visual inspection with the microscope should be done after every step in the cleanroom
and before the cooldown to detect problems in the fabrication process. We show different
junction designs in the false colored scanning electron microscope (SEM) pictures in Fig. 3.8.
The bridge-free junction is depicted in Fig. 3.8a where the different colors represent the two
aluminum layers. The upper part of the circuit is only connected by the top layer (orange),
while the bottom part is connected by the bottom layer (blue). The remaining notches show
the leftovers of the mirror wires that were removed during the lift-off. In Fig. 3.8b alternating
connecting wires are used to form large arrays of Josephson junctions.

Slightly different to the bridge-free junction is the cross-type junction shown in Fig. 3.8c. In
our experience it is more reliable to use for small junction areas. It is produced by using only
one top resist overhang for the horizontal orange wire in Fig. 3.8c. The fabrication process
is outlined in Fig. 3.9, where we do not show the aluminum that is evaporated onto the
top layer resist, as it is removed during lift-off and decreases the visibilty of the structures
underneath.
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Plassys Bestek MEB 550S
Descum Ion gun

Ar/O2 flow 10 sccm/5 sccm
Parameters Vbeam = 200 V, Ibeam = 10 mA, Vacc = 50 V

Time 100 s
Gettering Crucible: Ti
Time, Rate 2 min, 0.2 nm/s
First layer Crucible: Al

Thickness, Rate, Angle 25 nm, 1 nm/s, 25◦
Oxidation Static

Oxygen pressure 1 mbar
Time 4 min (excl. ramp and pumping)

Second layer Crucible: Al
Thickness, Rate, Angle 50 nm, 1 nm/s, −25◦

Lift-off
Solution Acetone on hotplate 60°C

Time Few hours until resist is fully dissolved
Comments Prevent evaporation by covering with lid

After a few hours, spray with acetone while inside beaker
to detach metal residues from sample
Rinse with alcohol/acetone and put in new beaker with acetone
Sonicate gently (135 kHz, 15%)
Rinse with alcohol and deionized water
Blow dry with N2

Initial testing of the fabricated 3D transmon samples showed energy relaxation times in the
range of T1 = 50− 100 µs and coherence times T2 = 5− 50 µs, showing that the samples suffer
from strong dephasing. Mitigating dephasing mechanism is an ongoing project.
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Figure 3.9: Cross junction fabrication. a The resist mask consists of a bottom layer resist
that is more sensitive to electron-beam radiation than the top resist. b The first aluminum layer
defines the trench wire that is parallel with the indicated arrows, while the perpendicular wire is
deposited on the wall. Of course the aluminum completely covers the top resist but is not shown
for better visibility of the important features. c Exposing the sample to a controlled oxygen
atmosphere creates an oxide layer on top of the aluminum layer. d The second aluminum
oxidation forms the second junction electrode. The wire is formed underneath the top resist
overhang. e After lift-off only the wires in direct contact with the substrate remain. f SEM
picture of a cross-type junction. We see that the wire that is parallel to the evaporation arrows
is created twice but has an offset such that the junction only consists of one bottom and one
top layer.

Tantalum-Qubit Benchmarks

Recent publications showed promising results with transmons made from tantalum (Ta) thin
films [119, 120]. With over 500 µs the tantalum transmons have achieved the best reported
lifetimes to date. Instead of the wet-etching process we utilize a dry etching process based
on chlorine to define the Ta structures. The utilized wafers are 4" sapphire disks that have
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Figure 3.10: Extracted characteristic times. The first good Ta qubit shows promising
results with an average lifetime of T1 = (45.91± 0.05) µs, coherence time T2 = (18.44± 0.07) µs
and Hahn-echo coherence T2,echo = (61.3± 0.2) µs.

a single side coated with a thin 200 nm layer of tantalum. After we receive the wafers we
typically clean them using acetone and rinse them with isopropyl alcohol and DI water. Then
we spin a negative resist ma-N 2403 with 2000 rpm for 45 s. In the first lithography we define
the large structures such as the transmon pads. The resist is developed with the developer
ma-D 525 for 90 s and immediately rinsed with DI water and blow dried. The negative resist
leaves the exposed areas unsoluble, such that only the defined structures stay covered by the
resist and protects the tantalum during the etching process. We use a plasma with RF power
of 50 W, ICP power of 100 W, Cl2 flow of 4 sccm, Ar flow of 50 sccm and etch for about
260 seconds in the Sentech ICP SI 500. Some samples showed remaining tantalum in parts
without resist cover during a visual inspection after the first etching run. In this case, we
added at most another 60 seconds in a second etching run without breaking the vacuum to
remove the residues. After the etching process the wafer is immediately dipped into water, to
avoid that the chlorine residues react with air. Afterwards the wafer is visually inspected and
cleaned in a piranha solution. The remaining fabrication is similar to the regular transmon
fabrication where we define the Josephson junctions between the Ta pads and evaporate
aluminum, according to 3.3.2.

In Fig. 3.10 we show a stability measurement for the first Ta qubit with lifetimes exceeding
40 µs. Similar to the regular aluminum transmons the coherence time T2 is much lower than
the achievable 2T1, indicating a large dephasing rate. Compared to Ref. [120] we are still an
order of magnitude away from the lifetimes that can be reached with tantalum transmons,
thus the Ta fabrication is a vital area of research within our cleanroom facility.
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3.4 Setup Specification

The control and measurement of quantum microwave systems have seen rapid development
in the past 20 years, while more recently the efforts intensified with the goal to build a
commercial fault-tolerant universal quantum computer. The requirement to cool down su-
perconducting qubits to low temperatures not only arises from the critical temperature of
the superconductors TAl ≈ 1 K but also the typical transition frequencies in the microwave
regime h × 5 GHz/kB ∼ 240 mK, where kB is the Boltzmann constant. Special techniques
for mounting and thermalizing the sample, as well as cryogenic wiring techniques from room
temperature to millikelvin temperatures have been developed that enable the measurement
of quantum circuits [39]. This section is intended to outline the sample mounting and wiring,
as well as the utilized measurement setups.

3.4.1 Cryogenic Wiring

10 mm

10 mm

Sideport 1

Waveguide input Waveguide output

Sideport 2

10 mm

a

b

Figure 3.11: Photograph of the waveguide assembly. The waveguide middle section has
one set of qubits mounted and the other aligned on the top for better visibility. The coils are
mounted such that they have different couplings to the qubits which allows us to individually
tune each qubit to a specific frequency. Waveguide-to-coaxial adapters are attached to the
open left and right side of the waveguide, such that the transmission can be probed.

The transmons are investigated by scattering microwaves on the transitions. Therefore, we
have to route a signal that is generated by a device at room temperature to the base plate
of the cryostat and connect it to the waveguide. At the same time the sample has to be
thermalized to the temperature of the cryostat in order to not destroy the fragile quantum
states or limit their coherence due to quasi-particles and thermal population of excited states.
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The rectangular waveguide in Fig. 3.11 serves as both, the thermalized sample box and the
connection to the coaxial wiring that guides the signals to the microwave generation and
detection system. The qubits are accessed either directly via the signal that travels through
the waveguide or the sideports that provide a local microwave field.
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Figure 3.12: Illustrated sideport driving and power calibration. a The electromagnetic
field symmetry (red, the electrical field) of the sideports does not coincide with that of the TE10
mode (indicated at the left face of the waveguide), the only propagating mode below the cutoff
frequency of the second mode (≈ 13 GHz). The field applied through the sideports will be
exponentially attenuated and enables us to locally excite pairwise transmons Q1 and Q2 or Q3
and Q4. The pin is not centered at the middle of the transmons on the z-axis, such that there
is a field gradient across the two transmon pads and allows us to also excite local dark states. b
When we apply a pump tone through the sideports we can calibrate the power arriving at the
transmons by observing an Autler-Townes splitting in the coherent scattering measurement
through the waveguide which is a direct measurement of the Rabi frequency [77, 121]. In this
measurement we tune Q2 at the decoherence-free frequency ωπ ≈ 7.3 GHz, while the other
transmons are detuned below the cutoff of the TE10 mode. We then apply a pump tone
through Sideport 1 and Sideport 2. In the left panel we can observe a splitting of the dressed
transmon states, while in the right panel we can only observe small saturation effects. We can
calibrate all four transmons with this routine to assure a sufficient locality of the driveports.

The sideports sketched in Fig. 3.12a are designed such that the polarization of the electrical
field does not coincide with the waveguide field, thus it cannot propagate. The setup has two
of those local access channels, that are located at the transmon pairs and enter the waveguide
through a hole in the sidewall. Figure 3.12b shows the impact of both sideports on a single
qubit, similar to the measurements in Sec. 4.1. Clearly, sideport 1 saturates the qubit at
much lower applied power and we can observe an Autler-Townes splitting, while sideport 2
barely saturates the qubit within the shown power range. This locality enables an arbitrary
adjustment of the relative phase between the two drive fields applied at sideport 1 and 2.
There is also a field gradient within the pair that could potentially be adjusted by inserting a
second pin through the opposite wall, however this was not necessary for the experiments.

The clamps, depicted in the detailed view of Fig. 3.11 thermalize the substrate by tightening a
small screw on on the side. They also have space for two superconducting coils that are screwed
onto the clamp and enable flux-tuning of the transmons. The clamp is then attached to the
waveguide middle section that is in direct contact with the sample holder and thermalized to
the base plate of the cryostat.

We use a 2016 Triton Cryofree dilution refrigerator system with DU7-300 dilution unit from
Oxford Instruments with self built cryogenic microwave wiring. The aluminum circuits have
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to be cooled down below the critical temperature TAl = 1.2 K to become superconducting.
Furthermore, cooling down the sample to millikelvin temperatures is essential to reach the
ground state of the circuit. Only if the thermal energy is much smaller than the energy
that is associated with the resonant circuit, i.e. kBT � ~ω01, the thermal fluctuations are
small enough such that the excited state population is minimized. Additionally, the energy
level separation has to overcome the linewidth broadening that originates from dissipation and
thermal population of higher excited states [29]. To reach an excited state thermal population
of 1% for superconducting qubits with typical transition temperatures of a few gigahertz the
circuit has to be cooled down to a few tenths of milikelvin, following a Boltzmann distribution
P|e〉 ≈ exp

(
−hf01
kBT

)
[122].
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Figure 3.13: Schematic of the experimental wiring with selected components. All
microwave cables have to be attenuated at well thermalized anchors at different stages and
filtered.

The electronic control is separated into radio frequency (RF) and direct current (DC) compo-
nents, where the signal generation and detection components are located at room temperature
and have to be routed to the base plate of the cryostat. The RF signals are used to drive and
probe the circuit, while the DC components are used to apply a flux-bias to frequency-tunable
qubits. To effectively suppress Johnson-Nyquist noise, the RF input cables, schematically
shown in Fig. 3.13 have to be attenuated at different stages and heavily filtered, otherwise
the thermal noise can travel to the sample and dephase the qubit [123]. To suppress thermal
conductivity, the inner and outer conductor of the input coaxial cables are made from stain-
less steel. The rather low electrical conductivity compared to copper means that the signal is
attenuated by roughly 10 dB on its way from the top to the base plate. However, to properly
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thermalize the cables at the cooling stages three attenuators are placed at 4 K, 100 mK and
20 mK.

Only 1% of the signal power passes through a 20 dB attenuator while 99% is absorbed. If it
is not thermalized to the actively cooled cryostat plate, the attenuator heats up and emits
black body radiation at much higher temperatures. Even though the attenuators are ther-
malized with copper clamps the question remains how cold especially the inner conductor
gets [124]. Concatenating attenuators at different stages in the cryostat is a balance between
cooling power and dissipated power. The mean number of thermal photons ni at stage i with
attenuation Ai is given by [39]

ni(ω) = ni−1(ω)
Ai

+ Ai − 1
Ai

nBE (Ti,att, ω) , (3.18)

where the first term represents the attenuated noise photons from the previous stage and the
second term from the current stage.

Typical powers of around −130 dBm at the qubit location correspond to detection voltages of
a few hundred nanovolt. Even though there is an effort to build single photon detectors for mi-
crowave frequencies, the most commonly used strategy is to amplify the signal before detecting
it. This has to be done in a way that the effective noise temperature is minimized [125]

Teff = T1 + T2
G1

+ T3
G1G2

+ ..., (3.19)

where Ti is the noise temperature and Gi the gain of amplifier i. In the setup, we use
a cryogenic high electron mobility transistor (HEMT) from Low Noise Factory and room
temperature amplifiers. However, we do not use quantum noise limited amplifiers, which
would help to increase the signal to noise ratio and could enable single shot readout. Even
though the room temperature amplifiers create the largest noise signal of the output section
elements, the cryogenic amplifiers are the dominant noise source for the sample, as seen
in Eq. (3.19). We found that replacing the standard switching power supply with linear power
supplies results in a dramatic reduction in noise [126]. The waveguide output is connected
to a K&L 6L250 lowpass filter and then to two concatenated isolators that shield the sample
from thermal photons traveling back from the amplifiers. The output of the second isolator is
then connected to the HEMT amplifier, sitting at the 4 K stage by a superconducting coaxial
cable to minimize photon loss and reduce thermal conductivity between the stages. Usually,
the performance of the setup is restricted to a range between 4 to 12 GHz, which is mostly
limited by the utilized filters, circulators and amplifiers.

3.4.2 Microwave Generation and Detection

The waveguide sample is characterized using either a vector network analyzer (VNA) or a
pulsed measurement setup in which the Quantum Machines Operator X is the main control
instrument. The wiring inside the cryostat is independent of the two options. Figure 3.13
shows only the time-domain setup, which is typically extended with a VNA in the experi-
ment.
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The spectroscopic measurements with the VNA are slow, meaning they are only able to
investigate the steady state of the system by varying the frequency of the microwave signal.
After interacting with the system the signal arriving at the VNA is then compared to the
phase and amplitude of the sent signal in a heterodyne detection scheme. Comparing the
sent and measured voltages V R

1 and V L
1 at the VNA ports determine the complex S matrix

elements [88] (
V L

1
V R

2

)
=
(
S11 S12
S21 S22

)(
V R

1
V L

2

)
. (3.20)

The measurements in the experiment section focus only on transmission S21 measurements.
In reciprocal systems this is equivalent to S12.

The time-domain setup is able to send and detect microwave pulses on the nanosecond scale
and therefore resolve time dynamics of microwave circuits. Pulses are generated by mixing
a continuous wave (CW) microwave pump. Here, in the range between ∼ 6 GHz to 8 GHz
with the I and Q quadrature of a modulated signal between ∼ 50 MHz to 300 MHz, which
is provided by an arbitrary waveform generator (AWG, Operator X - Quantum Machines).
The upmixing setup includes various filters, attenuators and switches (not shown in Fig. 3.13)
to achieve the desired suppression of noise and unwanted sidebands. The signal is finally
filtered at the base plate by a 6L250-12000 low-pass filter from K&L, followed by a custom
built Eccosorb filter. The transmitted signal is downconverted to an intermediate frequency
using an image-rejection mixer, filtered and finally digitized by the Operator X from Quantum
Machines, which serves as the AWG for pulse generation and analog to digital converter (ADC)
for signal detection. To cover the range of 400 MHz in the spectroscopy of the two-excitation
manifold, we used both the upper and lower sideband to send pulses. The sidebands have a
phase difference of 180°, such that the data that was recorded for spectroscopy pulses with
the lower sideband is manually shifted by π in the phase-sensitive spectroscopy of Fig. 4.25.

Circle-Fit and Qubit Rates

The low power transmission around the resonance of a qubit coupled to a waveguide is given
by the ratio between the the output and input field [9, 12] that resulted in Eq. (2.24)

S21(ω) = 〈aout 〉
〈ain 〉

= 1− γr
2Γ

1− iδω

Γ

1 +
(
δω

Γ

)2
+ Ω2

(γr + γnr) Γ

. (3.21)

Here, we defined dissipation rates corresponding to the radiative waveguide coupling γr and
intrinsic decay γnr, as well as the total decoherence rate Γ.

The VNA measurement provides the complex scattering matrix defined as the voltage ratio,
i.e. we are sensitive to the phase and amplitude. In the case for the transmission S21 =
Vout/Vin it is defined as the ratio between the output voltage Vout of the VNA and the input
voltage Vin that is detected after interacting with the system. When we plot the transmission
in dB scale we usually square the S parameter to get a power ratio, as the power is defined as
P = V · I = V 2/R, where I is the current and R the resistance. Then we can write the S21
parameter as

S21(dB) = 10 · log10(|Vout/Vin|2) = 20 · log10(|Vout/Vin|). (3.22)
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In the analysis we use a circle-fit routine developed for characterizing linear resonators that
are coupled to a transmission line in a notch-type configuration [111, 112]. This way, we
take into account the environment and correct for impedance mismatches that are caused
by standing waves in the lines, including the waveguide adapters. The notch configuration
transmission is given by

S21(f) = aeiαe−2πifτ
[
1− (Ql/ |Qc|) eiφ

1 + 2iQl (f/fr − 1)

]
, (3.23)

where Ql is the loaded, Qc the coupling and Qi the internal resonator quality factor, f is the
probe frequency, fr the resonance frequency of the resonator. The impedance mismatches are
absorbed in the parameter φ. The environment is considered with the amplitude parameter
a, phase shift α and electronic delay τ that arises from the time that a signal travels through
the cables and circuit components. As already pointed out in Refs. [127–129] we can compare
the definitions of the quality factors and their associated linewidth κ = ω01/Q with the rates
obtained from the qubit transmission Eq. (2.24):

Q1 = ω01
2Γ Qc = ω01

γr
Qi = ω01

2γ′nr
(3.24)

In our measurements, the VNA measures S parameters, which are defined as voltage ratios
and thus contain the phase information of the signal. However, quality factors are defined
by dissipated power in a resonant circuit. To establish a relationship between exponential
decay that is either field or power dependent and the quality factors obtained by the circle fit
routine, we must include a factor 1/2 for the loaded and internal quality factors to match the
definitions in the master equation.
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CHAPTER 4
Rectangular Waveguide Quantum
Electrodynamics with Transmon Qubits

Most superconducting waveguide QED experiments use transmon qubits coupled to on-chip
transmission lines. Integrating both elements into a single chip has the advantage that the
required space is minimized, especially when scaling the system to a large number of emitters
that are separated by wavelength distances. Nevertheless, rectangular waveguides are very
well suited for medium-scale experiments and benefit from the 3D arrangement possibilities
of the qubits and superconducting coils. Moreover the chip does not require bonds and can be
individually selected after room-temperature characterization. The physics in the waveguide
at frequencies above the cutoff is the same compared to the on-chip analogue. The qubits
interact with the propagating photons in the waveguide. Thus we characterize the individual
constituents by themselves before investigating coupled systems. The waveguide coupling rate
of about ∼ 15 MHz sets the timescale for the individual transmon decay in the range of ∼ 10 ns
such that its parameters are extracted by continuously driving the system into the steady state
and measuring the scattered radiation in the frequency-domain. For two qubits the capacitive
coupling strength between neighboring qubits is extracted by tuning them into resonance and
observing the typical splitting of the hybridized states. The formation of dark states in multi-
qubit systems enables the exploration of a regime where the timescales are not dominated
by the strong waveguide coupling. This opens up the possibility to perform time-resolved
measurements on the two-qubit experiments with direct and waveguide-mediated interactions
and the calibration of the decoherence-free subspaces. The four-transmon experiment consists
of a pairwise interaction via the waveguide to construct a more complex Hilbert space and
shed light on the physics of coupled many-body systems in waveguide QED.

4.1 Single Transmon Waveguide QED

After mounting the transmons into the clamps and sliding them into the waveguide middle
section as shown in Fig. 3.11, the open sides are closed by the adapters that connect the
waveguide to the coaxial lines. In total we mount four transmon qubits and four supercon-
ducting coils that we need to accurately characterize. In this chapter we focus on the single
transmon parameters that are extracted by vector network analyzer (VNA) transmission
measurements. The VNA measurement provides the complex scattering parameter S21 from
comparing its output signal to the signal that traveled through the cryostat and interacted
with the sample. It only contains information about the elastically and coherently scattered

65
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signal. Inelastic scattering processes, such as the observation of resonance fluorescence or the
Mollow-triplet [12] can be investigated by using spectrum analyzers or by analyzing the time
traces of the pulsed measurement setup. The individual transmon parameters together with
the capacitive qubit coupling strengths are sufficient to simulate most of the system dynamics
and thus also important to understand the multi-qubit behavior.

Waveguide and Qubits
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Figure 4.1: Waveguide transmission. The measurement at low power, where low power
means about -130 dBm at the qubit positions, shows four resonances that we attribute to
the transmon qubits. They disappear when a high power (∼ -60 dBm) is applied due to the
non-linearity of the Josephson junction. The qubits effectively act as saturable mirrors [12].
Even when measuring with low power, the qubits are already saturated, which can be seen
from the rather low extinction between a resonantly and a non-resonantly transmitted signal
< 20 dB.

Once the sample is cooled down to millikelvin temperatures we conduct a VNA transmission
measurement. The signal, emitted by the VNA source port, has to pass through the room
temperature coaxial wiring, as well as the cryogenic input wiring, attenuators and filters such
that it is attenuated by approx. 70 dB before interacting with the waveguide sample. After-
wards it has to pass two isolators and a band pass filter before reaching the superconducting
coaxial cable. At the 4 K stage the output cable is connected to a HEMT amplifier where
the signal is amplified by ∼ 35 dB followed by another amplifier at room-temperature that
has an additional gain of ∼ 40 dB. Finally, the signal is recorded by the heterodyne detection
scheme of the VNA. The high power transmission in Fig. 4.1 shows a measurement through
this wiring scheme. Clearly, we can observe that in the low power measurement four resonant
features appear at f1 = 6.5 GHz, f2 = 7.55 GHz, f3 = 8.0 GHz and f4 = 8.5 GHz. These
resonances are saturable, as they disappear in the transmission when the waveguide is probed
with high power (70 dB difference). They correspond to the fundamental transitions of the
four frequency-tunable transmon samples with ground state |g〉 and excited state |e〉. The
initial measurement with no applied flux show resonance frequencies that are randomly spread
over the full tuning range of the transmons and depends on the trapped offset-fluxes. The
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measurement is a quick sanity check in order to verify that all samples survived the mounting
and cool-down procedure.

Flux Tunability

In Eq. (1.16) we found that a transmon can be made frequency tunable when it consists of two
parallel Josephson junctions. Adding a control parameter yields the necessity to calibrate it,
such that we can independently tune the transmon resonance frequencies. The split-junction
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Figure 4.2: Flux maps. a By properly placing coil 1 directly on top of Q1, the magnetic
field dominantly couples to transmon Q2, shifting it by one flux quanta over the whole span of
applied current, while Q1 is only tuned approx. 500 MHz. When the center of the coil axis is
placed directly in the plane of the transmon substrate, the magnetic field lines are mainly in-
plane with the patterned structures and therefore have only little contribution perpendicular
to the SQUID loop. Further away from the center of the coil axis the field will not be as
homogeneous and therefore tune qubit Q2. If the distance gets even larger (4.5 cm) the field
is already very weak so that Q3 and Q4 are only tuned very weakly. b Coil 2 mainly tunes
Q1 and Q2 with the same strength. c Arrangement analogue to a but on the other pair, now
mainly tuning Q3. d Arrangement analogue to b but on the other pair, now simultaneously
tuning Q3 and Q4.

transmons are tuned via a magnetic field that is generated by superconducting coils on the
waveguide housing. Each coil is connected to a DC current source (YOKOGAWA GS210) at
room temperature, such that an applied current will change the magnetic field that penetrates
the transmon loops. In Fig. 4.2 the generated current is changed from −5 mA to 5 mA while
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monitoring the transmission through the waveguide. An increasing absolute value of the
applied current leads to a stronger magnetic field that changes the resonance frequency of
the qubits. Two coils are placed in close vicinity of a transmon pair such that they mainly
tune one pair and only marginally affect the other. Here, coils 1 & 2 are placed on top of
transmons Q1 and Q2 and coils 3 & 4 on top of transmons Q3 and Q4. Within the pairs coils
2 and 4 affect both qubits, while the other coils mainly influence the resonance frequency of
only one qubit. Although the arrangement helps to reduce flux crosstalk, a proper calibration
is needed for independent qubit control. By fitting the analytical expression for the resonance
frequency of a transmon with a split junction and maximal Josephson energy EJ,max

hf01(Φ) =
√

8EJ(Φ)EC − EC =

=

√√√√8EJ,max cos
(
π(Φ + Φoff )

Φ0

)√
1 + d2 tan2

(
π(Φ + Φoff )

Φ0

)
EC − EC,

(4.1)

to the extracted transmon frequencies we obtain the asymmetry parameter d and the flux
period Φ. The mutual inductance matrix M converts the current I at the DC source to
magnetic flux Φ at the transmon loop

Φ = M · I. (4.2)

For our sample, consisting of four qubits and four coils this results in a matrix M of size
4× 4. The entries quantify the sensitivity of changes in the current through each coil on the
resonance frequency of each qubit. By solving the equations for the desired qubit frequencies,
we can find a set of coil currents that satisfies this condition enabling us to independently
tune the qubit and calibrate out the crosstalk. The frequency tuning-ranges of the transmons
are roughly fQ1 = 5.9 GHz− 8.4 GHz, fQ2 = 6.0 GHz− 8.35 GHz, fQ1 = 6.1 GHz− 8.67 GHz
and fQ4 = 6.0 GHz− 8.45 GHz.

Qubit Characterization

When a qubit interacts with the coherent microwave field, interference between the transmit-
ted and the elastically scattered photons lead to a distinct qubit lineshape in the transmission
measurement. This lineshape is analyzed to extract the fundamental coupling strengths that
define the timescales for the system. In the strong coupling limit they are usually on the order
of a few nanoseconds, such that it is convenient to study the system in the steady-state. The
anharmonicity of the transmon leads to a power saturable qubit transition we can directly
observe with a two-tone spectroscopy. The transmon is a multi-level quantum system where
the anharmonicity is a crucial parameter that defines the limit on the excitation pulse length
before the drive also substantially induces transitions to the second excited state. By driving
the qubit transition beyond qubit saturation, we find that the Autler-Townes splitting is a
useful technique for power calibration, particularly because the power arriving at the qubit
generally varies for different frequencies. This is particularly important below the waveguide
cutoff, where fields cannot propagate and qubit-photon bound states emerge.

The scattering parameter S21(ω) is a complex quantity with real and imaginary part including
information about the amplitude and phase of the microwave signal. The spectral shape of a
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Figure 4.3: Parameter extraction via a circle-fit routine. a The transmission magnitude
of a low power signal reaches almost zero when the probe signal is resonant with the funda-
mental transmon transition. b The signal experiences a 180 deg phase shift after interacting
with the emitter. c Performing a circle-fit routine on the complex scattering parameters also
accounts for asymmetric lineshapes that are caused by the interference with standing waves
in the microwave background. The red dashed line is the result of the circle-fit.

f01 (GHz) QL Qc Qint
Γ
2π (MHz) γr

2π (MHz) γ′
nr

2π (MHz) α
2π (MHz)

Q1 7.332 476 493 8878 7.8 14.9 0.4 219
Q2 7.333 549 576 11651 6.7 12.7 0.3 222
Q3 7.334 443 468 8238 8.3 15.7 0.5 225
Q4 7.331 534 564 10079 6.7 13.0 0.4 206

Table 4.1: Transmon parameters. For the extraction of the characteristic single trans-
mon parameters, the fundamental transmon transition f01 is tuned to match roughly the
decoherence-free frequency fπ. The coupling efficiencies are β1 = 0.96, β2 = 0.95, β3 = 0.95,
β4 = 0.97.

resonator coupled to a transmission line in a notch configuration is very similar to a qubit in the
low power limit Ω� γr. Thus, we use the circle-fit routine [111, 112] to extract qubit Q factors
from the transmission data. The benefit of using the circle-fit routine is that an additional
term takes into account the environment that gives rise to very asymmetric lineshapes caused
by standing waves due to impedance mismatches in the lines [130] as well as the impedance
mismatch of the qubit with the waveguide [111]. In Fig. 4.3 the characteristic waveguide
QED parameters are extracted by fitting Eq. (3.23) to the transmitted complex scattering
parameters around the qubit resonance such that we obtain the resonance frequency f01 and
the quality factors Q. The other qubits are detuned by a few gigahertz to avoid hybridization
and the associated linewidth broadening. For the intended experiments the most interesting
region is the frequency that corresponds to a λ/2 distance between the pairs, thus we list
these parameters in table 4.1. By using the relations in Eq. (3.24) we can express the quality
factors in terms of waveguide QED decoherence and decay rates according to Eq. (2.24). The
measurement has to be done with sufficiently low power to not saturate the qubit. Saturation
will lead to an artificial decrease of Qi. Here, Qi is a lower bound for the internal qubit losses.
For a more accurate characterization of the internal qubit loss rates, the waveguide coupling
must be adjusted so that it does not dominate the overall decoherence rate [80].
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Figure 4.4: Quality factors and waveguide transmission. Close to the cutoff the quality
factors increase for increasing frequencies. However, while the loaded and coupling quality
factors Ql and Qc settle around a constant value, the internal quality factor Qi begins to settle
but eventually keeps increasing as the qubit is tuned towards its flux sweetspot at ∼ 8.2 GHz.

Tuning a single qubit within its frequency range allows to extract its parameters at different
regions of the waveguide. In Fig. 4.4 we show the qubit quality factors at different resonance
frequencies together with the transmission data for the empty waveguide. When the sample is
thermalized to the base temperature of the cryostat we expect that the transmons are limited
by flux noise due to their large SQUID area, resulting in a decreasing internal quality Qi,
when tuning the transmon to frequencies away from the upper sweetspot. The decreased
speed of light close to the waveguide cutoff frequency fc,10 ∼ 6.6 GHz effectively increases
the interaction strength of the photons with the qubits. This causes the quality factors to
increase when they are tuned further into the band. At around ∼ 7.2 GHz they seem to
settle to a constant value. For even higher frequencies, the internal quality factor rises until
the maximal resonance frequency of the split-junction transmon. The vicinity to the flux
sweetspot decreases the transmon susceptibility to flux noise. As shown in Fig. 4.2, around
the sweetspot we require a larger applied coil current to change the resonance frequency, thus
decreasing the frequency change per flux quantum df/dφ.

In the strong coupling limit, where the decoherence rate is dominated by waveguide decay,
the internal quality factor of the transmon Qi provides only an upper bound for internal
decay and dephasing mechanisms as well as for external noise sources. One important noise
source is temperature. Effectively, thermal photons saturate the transmon transition which
causes a more shallow resonance dip when measuring the absolute transmission. This effect
effectively reduces the internal quality factor. Immediately after the cryostat base plate
reaches a constant temperature of Tbase = 25 mK, we can repeatedly probe the transmission
around the resonance frequency and extract the characteristic parameters as done in Fig. 4.3.
The excess of thermal population in the first excited state causes the internal quality factor Qi
to increase by a factor of two during 6 h of measuring, due to the further cooling of the sample.
Afterwards it settles around Qi ≈ 8500, while the resonance frequency keeps fluctuating over
a span of 0.5 MHz. Thus, for quality factors Qi < 8500 we seem to be limited by temperature,
while for Qi ≥ 8500 we are limited by flux noise. Measurements during the following days are
consistent with these frequency fluctuations.
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Figure 4.5: Transmon parameters vs. time. After the cryostat reaches a constant tem-
perature we repeatedly measure the transmission around the transmon 0-1 transition f01 and
perform a circle-fit routine to extract the characteristic parameters. a Over the measure-
ment time of 18 h the extracted frequency fluctuates within 600 kHz. b The extracted internal
quality factor Qi increases for 6 h, indicating the cooling of a hot sample and environment.

The transmon is often used as a qubit in quantum information processing. In order to suppress
leakage, mainly into the second excited state, when trying to populate the first excited state it
is important to engineer the anharmonicity of the transmon such that its transition frequencies
are sufficiently detuned from each other. The anharmonicity is measured by applying a pump
on the fundamental transmon transition, such that we populate the first excited state. With
increasing control power, we observe a saturation effect of the transition in Fig. 4.6 when
probing the transmission with a tone from the VNA around the resonance frequency. When
the first excited state is sufficiently populated, the next higher transition can also be driven,
resulting in a resonance dip detuned by the anharmonicity α/2π. The detuning of those
transitions usually sets the lower limit on the pulse length. Once the Rabi frequency of the
pulse is comparable to the anharmonicity it causes detrimental leakage into higher excited
states, but can be reduced by pulse shaping [131]. For the tuning range of the transmons of
fmin ≈ 6 GHz and fmax ≈ 8.5 GHz the measured anharmonicities α = Ec ∼ 220 MHz gives
ratios of EJ/EC ≈ 85− 200.
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Figure 4.6: Transmon anharmonicity. a A control tone with increasing amplitude is res-
onantly applied through the waveguide to the transmon |0〉-|1〉 transition. The transmission
is measured at low power such that the qubit is only saturated by the pump. For increasing
control power, the fundamental transition starts to saturate while a second transition appears,
detuned by roughly α/2π = −220 MHz. This resonance corresponds to the |1〉-|2〉 transition
of the transmon and enables us to directly measure the characteristic transmon anharmonic-
ity α = ω12 − ω01. For even higher control powers the states are AC Stark shifted due to a
dressing with the pump tone. b By extracting the dashed linecuts in panel a, we can fit two
Lorentzians to the transmission to characterize the resonant features, corresponding to the
first and second transmon transition.

Saturable Mirror

The non-linear behavior of the transmon can be observed in the transmission measurement
in Fig. 4.7 when the probe frequency is swept around the resonance frequency of the qubit
and the probe power is increased. If the probe power is below the single photon regime the
qubit absorbs the incoming photons and re-emits photons back into the waveguide. In the
forward direction the re-emitted photon interferes destructively with the transmitted signal.
The apparent reduction of transmission at the resonance frequency of the qubit depends
on the ability to interfere with the signal. Imperfect interference happens when the qubit
dephases during the time that the photon is stored or if the qubit decays into other parasitic
channels such that there is either a phase or an amplitude mismatch between the re-emitted
and transmitted photons. From Eq. (2.24) it can be seen that for low power Ω of the incoming
photonic field the transmission is perfectly suppressed if it is on resonance with the qubit,
acting as a perfect mirror [12]. If the amplitude of the incoming signal becomes so large
that the qubit cannot re-emit the photons back into the waveguide before another photon
arrives at the qubit we observe saturation effects in the resonant feature. We observe that
increasing the power such that more than a single photon arrives per lifetime ∼ 1/γr reduces
the interference between the probe signal and re-emitted radiation from the qubit, hence the
resonant transmission increases and eventually reaches unity. The low power measurements
shown in table 4.1 yield the characteristic qubit rates such that Eq. (2.24) only depends ont the
drive strength Ω. This can be used for a power calibration by fitting the analytic transmission
to the power dependent data with the fit parameter Ω such that we can relate the applied
power at the room temperature electronics to the power that arrives at the qubit. A more
accurate way to calibrate the on-chip power can be done by using the Autler-Townes effect.
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Figure 4.7: Power dependence. The ability to saturate the 0-1 transition reflects the non-
linear behavior of a qubit. The probe frequency is varied across the resonance frequency of
the qubit while the probe power is increased. a If the qubit is flux-tuned to a frequency
f01 = 7.33 GHz, where it is very susceptible to magnetic field changes we observe that the
resonance minimum fluctuates. For increasing probe power the transition gets less visible. As
the qubit can only deal with one arriving photon, it has to emit a photon before it can absorb
another one. Therefore the saturation depends on the decay properties of the transmon. b
When the qubit is tuned to the upper sweetspot where the frequency changes are smaller for
equal magnetic field changes, the resonance frequency is more stable. The points of lowest
transmission are used to calibrate the probe power, plotted on the right (Extracted Minima).
Setting the probe power to −150 dBm ensures that the contrast is maximized and the system
is not saturated by the probe tone.

Power Calibration

Already when extracting the anharmonicity in Fig. 4.6, it becomes clear that when the pump
power is increased beyond the saturation of the |0〉 − |1〉 transition, the transmon levels are
dressed by the pump field and the Autler-Townes splitting appears for both the |0〉 − |1〉 and
|1〉 − |2〉 transitions [77]. In general, the Autler–Townes effect is a dynamical Stark shift for
the case when a resonant oscillating electric field changes the shape of the spectral line. In
our case it is the applied oscillating electric field from the microwave pump that alters the
emission spectrum of the transmon transitions. The splitting between the dressed transitions
is given by the Rabi frequency Ωc = A

√
P where A is a constant that relates the power at

the generator P to the drive amplitude at the qubit Ωc. On its way from the microwave
source to the sample, the signal passes filters and attenuators, that are frequency dependent.
Moreover, the qubit coupling to the waveguide is not constant in frequency, evident in the



74 4.1 Single Transmon Waveguide QED

−30 −20 −10 0
Waveguide power (dBm)

−100

−50

0

50

100
Pr

ob
e

de
tu

ni
ng

∆
p

/2
π

(M
H

z)

−30 −20 −10 0
Sideport 1 power (dBm)

0 10 20
Sideport 2 power (dBm)

0.00

0.25

0.50

0.75

1.00
N

orm
alized

transm
ission

a b c

Figure 4.8: Autler-Townes effect. If a pump is applied to the |0〉 − |1〉 transition of the
transmon the transmission on resonance depends on the pump strength. Depending on the
port where the pump is applied the power, that is needed might be very different. a Through
the waveguide and b Sideport 1 (close to the transmon) the Autler-Townes splitting is visible
and can be used to calibrate the absolute power at the qubit by fitting the AC Stark shifted
transitions. The splitting equals the Rabi frequency and can be used to determine the atten-
uation from the pump to the qubit location. The white dashed line indicates the splitting,
where the distance between the upper and lower branch equals the Rabi-frequency. c For a
pump tone applied through sideport 2 we cannot observe a splitting within the power range of
the signal generator. Sideport 2 is located 45 mm away from the measured qubit, thus couples
very weakly, which is important in order to selectively control local qubits.

quality factors shown in Fig. 4.4. Thus, the conversion parameters A in table 4.2 are only
valid at the corresponding calibrated frequency.

In Fig. 4.8 we show the transmission around the transition frequency of qubit Q2 while in-
creasing the pump power of a coherent microwave source. As the power increases, the bare
transition saturates and gets dressed by the field of the pump. The AC field splits the two
bare transition states into doublets that are separated by the Rabi frequency depending on
the amplitude seen by the qubit. For the waveguide port and sideport 1 the qubit sees ap-
proximately the same power. Sideport 2 sits 45 mm away and its field does not propagate
along the waveguide, therefore the qubit effectively sees a much smaller field for the same
applied power. By fitting the dependence of the Rabi frequency on the source power we arrive
at table 4.2. The sideports are weakly coupled to the local transmon pairs so that the dark

AWG (MHz/V) ASP1 (MHz/V) ASP2 (MHz/V)
Q1 3× 103 2.5× 103 < 10
Q2 3× 103 1.4× 103 < 10
Q3 3× 103 140 2.3× 103

Q4 3× 103 140 1.6× 103

Table 4.2: Conversion factors. Fitted conversion factors A from Ωc = A
√
P , that converts

the signal generator power P into Rabi-frequency Ωc at the qubits. The calibration is per-
formed roughly at f = 7.3 GHz and the indices correspond to the waveguide port, and the
sideports 1 & 2.

state decay time is not limited by the losses introduced by the sideports. On-chip circuit QED
experiments [132] made use of additional drive lines for over a decade, such that we adapted
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and implemented them in 3D waveguides. In our experiment, we capitalize on the symmetry
between the four qubits and the sideport drives. The side ports provide an amplitude gradient
across the local pairs, as verified by the different values for A in table 4.2. The asymmetry
will be helpful to access dark states |D1〉 and |D2〉 that arise from the capacitive coupling,
but also the possibility to independently adjust the relative phase φ between the pairs. This
allows us to apply a symmetric drive which has opposite symmetry of the drive field of the
waveguide. The field of the drive port does not coincide with the polarization of the TE10
waveguide mode and decays exponentially along the propagation direction of the waveguide,
thus the drive is effectively local.

Qubit-Photon Bound States

When the qubit is interacting with itinerant photons in the waveguide the transmission will
decrease due to destructive interference. The situation changes when the qubit is tuned below
the cutoff-frequency fc=6.546 GHz of the waveguide. As seen in Fig. 3.2, the waveguide dimen-
sions restrict the propagation of radiation for frequencies that are lower than fc, thus they are
reflected. However, as can be seen in Fig. 4.1 the transmission does not instantaneously drop
to zero for frequencies f < fc but is rather reduced by 50 dB over a range of 500 MHz. This
means that for f ∼ 6 GHz only a fraction of 10−5 of the power reaches the output at the other
side of the waveguide. If a qubit in the waveguide is tuned to a resonance frequency below
cutoff, the evanescent fields of the waveguide can dress the qubit which yields qubit-photon
bound states. The bound state obtains an exponentially decaying photonic wavefunction that
couples to the input and output ports, enhancing the transmission at the the qubits transition
frequency. Measuring the transmission close to the cutoff while tuning a qubit to the lower
sweetspot fsp = 6.2 GHz in Fig. 4.9a shows that the resonant feature changes from a dip (dark
blue) to a peak (white) in transmission. As the excitation pins of the waveguide-to-coaxial
adapters on both sides of the waveguide cannot excite a traveling wave at those frequencies,
the qubit acts as an additional antenna that increases the coupling between the two pins,
effectively increasing the transmission. These qubit-photon bound states have been already
observed in circuit QED experiments where a bandgap is engineered on an on-chip transmis-
sion line [17, 78, 133] but were also already observed in a rectangular waveguide [134]. We can
analyze the bound state peaks by extracting the linewidth for the resonances below the cutoff.
Figure 4.9b shows the linewidth against the detuning with respect to the cutoff frequency.
By fitting the data we find that the linewidth indeed scales exponentially with the detuning,
similar to the suppressed transmission.

Two qubit-photon bound states can interact by tuning them into resonance below the cutoff.
For a distant transmon pair this has been shown in [134]. The distant qubit-photon bound
state shows an avoided crossing that corresponds to the coupling strength between the bound
states. The coupling strength depends on the overlap of the localized photonic wavefunctions.
The wavefunctions are more localized when they are tuned further into the stopband, meaning
tuned further away from the waveguide cutoff. This again leads to a smaller overlap and thus
to a weaker coupling between the two bound states. Here, we investigate the avoided crossing
of a directly coupled pair that also results in an avoided crossing, shown in 4.10. Similar to
the case where the qubits are tuned in resonance in the waveguide band, we obtain a bright
and a dark state when the bound states are resonant. While the transitions in the waveguide
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Figure 4.9: Qubit-photon bound states. a When a qubit is tuned from the waveguide
band below the cutoff-frequency of the waveguide, the resonant feature changes its shape from
a dip to a dip-peak and eventually to a peak when measuring the transmission through the
waveguide. When the physical distance of the qubit is not too far from the waveguide ports it
will directly couple to the excitation pins. b As soon as the qubit is tuned below the cutoff-
frequency its linewidth decreases exponentially. d Extracted linecut from a at a coil current
of 3.65 mA. e Linecut at 4 mA. f Linecut at 4.4 mA.
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Figure 4.10: Interacting qubit-photon bound states. Two directly coupled transmons
are interacting below the cutoff via the capacitive coupling. A detailed measurement of two
transmons tuned into resonance below the waveguide cutoff shows that the high frequency peak
appears as a bright line while the low frequency peak gets narrower and finally disappears on
resonance.
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band correspond to frequencies with a decreased transmission due to the scattering processes,
the bright transition now corresponds to a frequency where the transmission is significantly
increased. As we will see later, we can study the bright and dark states in time-resolved
measurements.

4.2 Interacting Qubits

The experiment utilizes two different interaction mechanisms between the qubits. The capac-
itive coupling between two qubits is engineered by designing the geometry of the transmon
antennae and adjusting their physical distance. The observable feature is the avoided crossing
of the qubit transitions. When two qubits are separated along the waveguide the interactions
oscillate with effective separation distance, swapping from a purely coherent-exchange cou-
pling for distances (2n − 1)λ/4 to a dissipative coupling for distances nλ/2 with nεZ. On
resonance the qubits form hybridized compounds with new eigenstates that have very differ-
ent decay properties than the individual transmon.

4.2.1 Capacitive Coupling
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Figure 4.11: Avoided crossing of two qubits. a Tuning two capacitively coupled qubits
in and out of resonance results in an avoided crossing. Compared to the individual emitter,
the upper branch obtains twice the linewidth, whereas the lower branch disappears from the
transmission. The frequency splitting 2J

2π between the two transitions is used to find the
coupling strength J of the qubits. Here between Q1 and Q2: J12/2π = 43 MHz b For the
other qubit pair Q3 and Q4 we extract J34/2π = 47 MHz.

Tuning two proximal transmons in and out of resonance and measuring the transmission
through the waveguide results in an avoided crossing between two transitions, plotted in
Fig. 4.11. Fitting the resonances and determining the minimal distance between the branches
(see insets) allows to extract the coupling strengths between qubits Q1 and Q2 as J12/2π =
43 MHz and qubits Q3 and Q4 as J34/2π = 47 MHz. In the detuned scenario the branches
represent the |0〉-|1〉 transitions of the two transmons. In the resonant case the transmons
hybridize and form a new set of eigenstates that arise from a direct coupling through the
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capacitance between the metallic pads of their antennae, sketched in Fig. 4.12a. In this con-
figuration the coupling has an effective 1/r3-dependence [84], leading to short range coupling.
On resonance, an excitation can swap coherently between the local transmons, resulting in
new eigenstates, in particular a symmetric state |Bloc〉 = (|ge〉+ |eg〉) /

√
2 and an antisym-

metric state |D1(2)〉 = (|ge〉 − |eg〉) /
√

2. In Fig. 4.12a the states are visualized by in- and
out-of-phase oscillating arrows. Here, the capacitively coupled transmons are located at the
same position with respect to the propagating waveguide field and symmetrically around the
center of the waveguide. That means that the phase of the electrical field that propagates
through the waveguide is the same for both transmons, thus the antisymmetric state decou-
ples and the waveguide drive can only access the symmetric state. The coherent exchange
interaction also lifts the degeneracy of |Bloc〉 and |D1(2)〉 and allows us to observe the decou-
pling of the antisymmetric superposition dark state when we tune the qubits into resonance.
At the same time the symmetric superposition bright state in the upper branch obtains twice
the linewidth. To characterize the dark states, we measure the ground state population by
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Figure 4.12: Direct qubit-qubit coupling. a Schematic of two capacitively coupled trans-
mons in a rectangular waveguide. The metallic plates form the coupling capacitance that
is responsible for the coherent exchange coupling. The waveguide ports can only excite the
states that match the phase of the waveguide drive field, which is symmetric for the capaci-
tively coupled pair. The sideport has a gradient across the pair and can therefore also excite
the antisymmetric states. b Measurement protocol of the dark state lifetime. The decou-
pling of the dark transition from the waveguide and reducing the decay rate to non-radiative
losses also imposes the necessity to excite it via the sideports. The readout is done via the
bright transition through the waveguide. c Dark state decay times plotted against their res-
onance frequency. Below the waveguide cutoff (dashed vertical line) the decay times increase
significantly compared to the times measured in the waveguide band.

employing a state dependent scattering scheme, adapted from quantum non-demolition state
detection in trapped ion quantum computing [135]. If the collective system is in the ground
state |G〉 we can coherently scatter photons between the ground state |G〉 and superradi-
ant state |Bloc〉 which reduces the transmission through the waveguide for photons that are
resonant with the bright transition. This is already evident by the absorption dip in the
transmission of Fig. 4.11. If one of the the dark states |D1(2)〉 is populated, the microwave
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signal is not scattered, resulting in unit transmission. By tuning the qubits into resonance at
different frequencies and selectively exciting the dark state using microwave signals applied
through the sideport we can measure dark state relaxation times, shown in Fig. 4.12c. The
sideport has a field gradient across the pair, which yields an antisymmetric drive component.
This means that the we can access the dark transition and measure the energy relaxation
within the range of the transmons tunability. In Fig. 4.12c the extracted dark state decay
times are plotted against their resonance frequency. We can even measure the dark state of
the interacting bound states below the waveguide cutoff, shown in Fig. 4.10. Here, the trans-
mission is enhanced when there is a resonant transition such that the readout scheme detects
a high amplitude signal when the ground state is populated and a low amplitude when the
population is in the dark state, already observed in Fig. 4.9.
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Figure 4.13: Local dark state measurements. a The dark state disappears from the wave-
guide transmission while the bright state is utilized for the detection. With the antisymmetric
component of the sideport one can drive Rabi oscillations while measuring the waveguide trans-
mission through the waveguide ports. This scheme enables to observe the Rabi oscillations for
increasing pulse amplitude and to characterize the relaxation time of the dark state qubit. b
Below the waveguide cutoff frequency the bright feature allows for the same readout scheme.
As the unsaturated bound state enhances the transmission we detect a high transmission am-
plitude when the dark state is not populated and a suppressed transmission for an populated
dark state. The optimal frequency is calibrated by performing T1 measurements for varying
frequencies of one transmon, while the other is kept at a constant frequency.

To understand the readout and excitation scheme we compare the situations when the qubits
are tuned into resonance in the band of the waveguide and below the cutoff frequency. The
interacting transmon characteristics differ when they are in the waveguide band or below the
cutoff, as can already be seen in Fig. 4.13. In the tuning maps the bright transition is visible
as a peak in transmission when tuning the transmons into resonance outside the band of the
waveguide, while in the band it is a dip. The additional dip feature is usually very hard to
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Figure 4.14: Characteristic times. Repeated measurements for a few hours to validate the
stability of the coherence in the dark states. a The dark state is created close to the upper
sweetspot of the two used transmons. b On the tuning slope, where the susceptibility to flux
noise is maximal. c In vicinity to the lower sweetspots well below the waveguide cutoff.

detect as it results in an even lower transmission. The bright feature is then again utilized to
read out the dark state qubit for frequencies below the cutoff such that the Rabi measurement
shows a high transmission amplitude if we do not excite the system. When the dark state is
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excited, the bound state cannot enhance the transmission as the transition disappears, thus
we measure low transmission amplitudes. Surprisingly, the Rabi measurement for increasing
the pulse amplitude shows more oscillations, compared to the in-band Rabi. We attribute
this to a weaker driving of off-resonant transitions from the two-excitation manifold. Below
the cutoff the waveguide acts as a filter as photons cannot propagate [124, 136], reducing the
noise background for the transmons. This is consistent with the improvement of measured
T1 times below the cutoff, but needs further investigation in this context. The resonance
condition is calibrated by tuning one transmon in and out of resonance with the other and
repeating the T1 measurement, shown in Fig. D.1. The largest dark state T1 time corresponds
to the optimal tuning of the transmon and thus the optimal symmetry condition.

In addition to the energy decay time T1 the dark states that are created by the capacitive
coupling are also characterized by performing a Ramsey [137] and Hahn-echo [138] experiment
to obtain the coherence times T2 and T2,echo. The measurements are then repeated for a 12
hours, while the base-plate temperature is monitored. Figure 4.14 shows the measurements
for different dark state frequencies, corresponding to the vicinity of the upper and lower
flux sweetspots of the individual transmons, as well as a set of measurements on the slope
where they are most susceptible to flux noise. Even in the presence of the four coils with the
transmon frequencies tuned to a point with maximal susceptibility the decay times are stable
over the time of measurements which enables the usage of the dark states without the need
to readjust the magnetic flux between experiments.

4.2.2 Waveguide-Mediated Interactions

Two transmons that are located in the waveguide separated by a distance along the propaga-
tion direction of the waveguide field can also be tuned in and out of resonance. Qualitatively,
there are already significant differences in the crossings of the qubit transition frequencies
in Fig. 4.15, that depend on the frequency where they are tuned into resonance. Effectively,
the different frequencies correspond to different qubit-qubit separations and give rise to dif-
ferent waveguide-mediated interactions.
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Figure 4.15: Transition frequencies crossings for distant transmons. a At an effective
distance d = λ/2, corresponding to a frequency fλ/2 = 7.33 GHz. b At an effective distance
d = 3λ/4, corresponding to a frequency f3λ/4 = 8.2 GHz.
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Figure 4.16: Calibrating λ/2. a To calibrate the frequency where correlated decay is maxi-
mized we utilize two distant transmon. As the inter-qubit separation is fixed we need to use
the flux tuning to set the resonance frequencies. The local drives "Sideport 1" and "Sideport 2"
enable us to excite the system with a phase φ that is arbitrarily set with the pulse generation
electronics. For a distance λ/2 the correlated decay is maximized resulting in a phase differ-
ence between qubits of φ = π for a photon traveling through the waveguide. The hybridized
symmetric state |Dnl〉 thus decouples from the waveguide and the antisymmetric state |Bnl〉 be-
comes superradiant. Employing both states we can excite the dark state via the sideports and
measure the ground state via the waveguide. b Tuning the qubits into resonance at different
frequencies and measuring the decay times of the dark state to calibrate the decoherence-free
frequency where T1 is maximized. c Detuning one qubit from the decoherence-free frequency
breaks the dark state symmetry and results in shorter lifetimes.

A frequency fλ/2 = 7.33 GHz corresponds to a wavelength of λ7.33 GHz = 91 mm in the rectan-
gular waveguide (see Eq. (3.7)). A frequency f3λ/4 = 8.2 GHz corresponds to a wavelength of
λ8.2 GHz = 61 mm. The crossings are a signature of waveguide-mediated interactions, that de-
pend on the effective separation [97]. When two transmons interact through the waveguide at
a separation dy, schematically shown in Fig. 4.16a, the signal propagating between the trans-
mons acquires a phase ϕ = 2πdy/λ that depends on the wavelength λ = 2πv/ω and distance
dy, where v is the group velocity in the waveguide and ω the angular frequency of the wave.
For the setup with physical separation between the transmons of dy = (46.0± 0.5) mm a
phase difference of ϕ = π corresponds to an emission frequency ωπ/2π = (7.312± 0.016) GHz.
There, correlated decay into the waveguide γj,k = √γjγk cos(ϕ) is maximized and coherent
waveguide-mediated interaction J̃j,k = √γjγk sin(ϕ)/2 is absent, due to the counter-periodic
behavior [20]. Here, the individual waveguide coupling rates are denoted by γj and γk, for
transmons j 6= k. The photon-mediated interaction leads to symmetric and antisymmetric
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states under qubit exchange, i.e. the dark state |Dnl〉 = (|ge〉+ |eg〉) /
√

2 and bright state
|Bnl〉 = (|ge〉 − |eg〉) /

√
2. For a distance of λ/2, the phase relation of the electromagnetic

field in the waveguide is antisymmetric (ϕ = π), thus we can only excite the antisymmetric
bright state. The dark state symmetry is opposite to the field symmetry of the waveguide,
eliminating the coupling to the drive field and decay into the waveguide. In Fig. 4.15a this
means that on resonance only the bright state is visible in the waveguide transmission.

To achieve control over the non-local dark state and calibrate the decoherence-free frequency
fπ the measurement employs the two additional drives sideport 1 and sideport 2 simultane-
ously. The locality of the sideport drives that was calibrated in Fig. 4.8 is important as the
two-qubit ensemble has to be driven with a symmetric phase to be able to excite the dark state
|Dnl〉. If it would propagate through the waveguide it would obey the phase-relation that is
imposed by the waveguide, which is φ = π for d = λ/2. The locality of the two sideports en-
ables to set arbitrary phases with the signal generation electronics. Similar to the capacitively
coupled qubits, the dark state is excited by a pulse on both sideports with a relative phase
that matches the dark state symmetry φ = 2nπ (nεZ). The measurement scheme is sketched
in Fig. 4.16a. The absence of coherent exchange coupling results in degenerate bright and
dark states, such that the pulse is only selective via the phase and not via the frequency. The
readout is then performed via the bright state through the waveguide, analogous to Sec. 4.2.1.
By tuning the qubits into resonance at different frequencies, selectively exciting the dark state
using microwave signals applied through the sideports with φ = 0 and measuring the ground
state population via the bright transition we experimentally search for the longest dark state
relaxation time around the analytical decoherence-free frequency fπ = (7.312± 0.016) GHz
and indeed find a maximum at fπ = 7.321 GHz, as shown in Fig. 4.16b.

By keeping one qubit at frequency fπ and detune the other qubit we can measure the dark
state resilience against imperfections arising from calibration errors and frequency drifts.
In Fig. 4.16c the dark state decay time is constant until the qubit is approximately 1.5 MHz
detuned from the second qubit, then starts to decrease to 0.5 ns at a relative detuning of
4 MHz. To confirm that the qubits are not detuned in the search for fπ, this measurement is
conducted at each point in Fig. 4.16b.

4.3 Multilevel Waveguide QED with Four Transmons

To build a system that incorporates waveguide-mediated and direct qubit-qubit interactions
we include four transmons that are properly arranged inside the waveguide. This enables us
to properly characterize a multi-qubit system and benchmark its usability in terms of dark
state energy relaxation and coherence times. We show how the dark state is addressed and
point out the necessity to further engineer the higher excitation manifold in order to create
a useful dark state qubit. The two-excitation manifold has a rich level spectrum that can be
turned into a feature by implementing a reset protocol for the dark state. Nevertheless, the
manifolds can be engineered to create a better dark state qubit. Realizing the four transmon
experiment is a first step towards multi-qubit waveguide QED experiments and opens the
door to explore many-body interactions in 3D waveguides. The full waveguide QED system
is depicted in Fig. 4.17, which consists of all four transmons and includes the waveguide input
and output ports to measure the transmission and the pairwise excitation sideports 1 and
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Figure 4.17: Full system with four transmons. a Sketch of the waveguide transmon
setup with local control lines Sideport 1 and 2 that respectively act on the proximal pair. b
The combination of capacitive and waveguide-mediated interactions creates a one-excitation
manifold with two local dark states and one non-local dark and bright state. Local dark states
have a different symmetry compared to the non-local ones, due to the waveguide phase-relation
that is imposed on them.

2. The transmons are tuned into resonance by calibrating the mutual inductance matrix
between the superconducting coils and the individual qubits, such that the bright transitions
of the capacitively coupled pairs match the decoherence-free frequency fπ. Both local two-
transmon bright states interact via the waveguide and form the collective four qubit states
|B4〉 and |D3〉, whereas the local two-qubit dark states |D1〉 and |D2〉 cannot interact via
the waveguide. The numbering of the states is according to their energy in ascending order.
For degenerate energy levels it is chosen according to their decay rates, where additionally
B indicates a bright transition and D a dark transition with respect to the waveguide decay.
These four states span the first excitation manifold, depicted in Fig. 4.17b. The local dark
states |D1〉 and |D2〉 have out-of-phase oscillating dipole moments such that they destructively
interfere and decouple from the waveguide. They obtain a decay rate that is reduced to the
internal decoherence mechanisms γ′nr. The local bright states are oscillating in-phase, such
that they couple to the waveguide that mediates the interaction between the pairs. The
pairwise out-of-phase oscillating dipole moments create the four transmon bright state |B4〉
due to the effective λ/2 separation between the pairs. The constructive interference results in
a four qubit superradiant linewidth 4Γ. The pairwise in-phase oscillating dipoles destructively
interfere, such that the subradiant state |D3〉 is only reduced to the combined internal loss
rates γ′nr.

Only the bright transition |G〉-|B4〉 is visible in the waveguide transmission, the other states
of the one-excitation manifold decouple. By measuring the transmission around the resonance
frequency of the bright transition we observe a resonance feature. We extract the decoherence
rate ΓB,4/2π = 30.5 MHz ∼ 4Γ resulting from constructive interference of all transmons
ΓB,4 = ∑

j Γj by fitting complex transmission data. In Fig. 4.18a we show the transmission
amplitude of the four-transmon superradiant transition (red data) in comparison with the
two-transmon superradiant transition (beige data) with decoherence rate ΓB ∼ 2Γ and a
single transmon (blue data) with decoherence rate Γ. As expected from the constructive
interference between the oscillating dipole moments, the coupling to the waveguide increases
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Figure 4.18: Transmission spectroscopy. a Transmission through the waveguide for one,
two and four qubits tuned into resonance. The bright states obtain double and fourfold the
single qubit linewidth. b With a pump tone applied on resonance with the bright transition
|G〉-|B4〉 and probing the waveguide transmission the additional states in the two-excitation
manifold appear, similar to the measurement of the transmon anharmonicity and the |1〉-|2〉
transition. Here, we can observe different transitions corresponding to states in the two-
excitation manifold.

linearly with the number of transmons. The dark states |D1〉, |D2〉 and |D3〉 are not visible
through the waveguide transmission. However, from the avoided crossings of the transition
frequencies of the local transmon pairs we know the frequencies of the local dark transitions
|G〉-|D1〉 and |G〉-|D2〉. Furthermore, the frequency of transition |G〉-|D3〉 is the same as for
|G〉-|B4〉. Table 4.3 summarizes the measured single transmon and bright state rates, as well as

Transmons Γ/2π (MHz) γr/2π (MHz) γ′nr/2π (MHz) α/2π (MHz) Jij/2π (MHz)
Q1 7.8 14.9 0.4 219 -
Q2 6.7 12.7 0.3 222 -
Q3 8.3 15.7 0.5 225 -
Q4 6.7 13.0 0.4 206 -
Q1Q2 14.8 (14.5) 27.6 (27.6) 1.1 (0.7) - 43
Q1Q3 16.8 (16.1) 31.8 (31.6) 0.9 (0.9) - -
Q1Q4 15.2 (14.5) 28.8 (27.9) 0.8 (0.8) - -
Q2Q3 15.3 (15.0) 29.0 (28.4) 0.8 (0.8) - -
Q2Q4 13.7 (13.4) 26.0 (25.7) 0.7 (0.7) - -
Q3Q4 15.1 (15.0) 27.9 (28.7) 1.1 (0.9) - 47

Q1Q2Q3Q4 30.5 (29.5) 57.7 (56.3) 1.7 (1.6) - -

Table 4.3: Parameter summary. The number in brackets corresponds to the value of the
added single qubit linewidths. The numerical simulations need the parameters γr, α and Jij
and additionally has to distinguish between non-radiative dissipation γnr/2π = 15 kHz, pure
dephasing κφ/2π = 100 kHz and collective dephasing Kφ/2π = 437 kHz.

the direct coupling strengths J12, J34 that can be extracted from the waveguide transmission
measurements. The bright state linewidths are always approximately the sum of the involved
single qubits.
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Similar to the Autler-Townes measurement in Fig. 4.8 and the extraction of the anharmonicity
α in Fig. 4.6 for the individual transmons we add a coherent pump that is resonant with the
|G〉-|B4〉 transition and record the waveguide transmission to spectroscopically observe the
multi-level energy spectrum of the four transmon system. In Fig. 4.18b, the pump is applied
through the waveguide, thus has a antisymmetric phase relation and saturates the |G〉-|B4〉
with increasing pump power. The dashed lines indicate one and two photon transitions, that
match the symmetry and power dependence from a numerical simulation. Where for a single
transmon one additional transition appeared, we identify at least 5 transitions in the measured
frequency range for the four transmon system. As the pump and readout tone are sent through
the waveguide we only observe the transitions that can be driven with an antisymmetric phase
φ = π. In comparison to a single transmon, where the anharmonicity is given by the difference
of the energies α = E01 − E12 ∼ 220 MHz, the level spacing decreased already for the one-
excitation manifold with the degenerate bright and dark state |B4〉 and |D3〉 and the local dark
states |D1〉 and |D2〉, that are only detuned by ∼ 90 MHz. Additionally, we see in Fig. 4.18b,
that the transitions into the two-excitation manifold, e.g. |G〉-|B13〉 are in spectral vicinity
of the one photon transitions only being detuned by ∼ 25 MHz with respect to |G〉-|B4〉 and
|G〉-|D3〉. From the numerical simulation in Sec. 2.6 we already know that the linewidth of
|G〉-|B13〉 is roughly three times the single qubit linewidth 3Γ, meaning that the spectral lines
are overlapping and cannot be addressed individually.
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Figure 4.19: Phase-sensitive two-tone spectroscopy. By using the sideports we can change
the phase difference between two continuous pumps connected to sideport 1 and 2 and measure
the transmission through the waveguide with a weak probe tone. a We observe no periodicity
for the case of a single transmon. b For two transmons we see a periodic change of transmission,
depending on the phase difference between the two microwave sources. We attribute the bad
quality to the limited phase stability of the coherent microwave sources. c For the case of four
transmon the features become clearer.

With the sideports we can already investigate the phase dependence with a continuous pump-
probe measurement. Each sideport is connected to a coherent microwave source while either
one, two distant or all four qubits are tuned to the decoherence-free frequency fπ ∼ 7.3 GHz.
In Fig. 4.19 we send a coherent tone to sideport 1 and 2. To adjust for power imbalance
due to unequal coupling of the excitation ports to the qubits we can use the Autler-Townes
power calibration, shown in Fig. 4.8 and table 4.2. By changing the drive phase of one of
the microwave sources the effective phase difference between the drives φ is varied. We can
investigate the symmetries by probing the waveguide transmission around the resonances for
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one, two and four qubits. For one qubit we do not observe a dependence on the phase while
for the case of two distant qubits, as well as the four qubit case we observe a periodicity
in the saturation of the transmission dip. The resonance feature appears and disappears
depending whether we drive the dark state with a symmetric phase or the bright state with
an antisymmetric phase. This is due to the different effective decay rates of the dark and bright
state. As the bright state decays much faster it can handle a higher pump power before the
transition is saturated. The longer storage time of the dark state leads to saturation at lower
pump power.

4.3.1 Rabi Oscillations

The spectroscopic investigation allows to study the energy spectrum of the coupled transmon
system over a large measurement bandwidth with narrow spectral resolution. While the
transmission only showed one bright state, we were able to reveal multiple transition in the
two-tone spectroscopy. In order to utilize the ground state |G〉 and dark state |D3〉 as a
waveguide QED qubit we need to achieve coherent control. Due to the symmetry restrictions
the waveguide does not have access to this transition, thus we need to use a drive that can
match the dark state symmetry. Additionally, access to a long-lived state in the one-excitation
manifold also enables a time-resolved measurement of the two-excitation manifold. As we want
to explore the four transmon manifold this means that we need to employ the dark state |D3〉,
because bright state |B4〉 decays too fast and leaves us no time to send a second spectroscopy
pulse. Moreover, the local dark states |D1〉 and |D2〉 only give us access to the specific local
two transmon subspace. The dark state |D3〉 and bright state |B4〉 are degenerate energy
levels of the four transmon system, thus we cannot use frequency selective driving if we
only want to address one or the other. On the other hand, their respective oscillating dipole
symmetries are π-shifted, such that a phase selective drive is able to distinguish between them.
To characterize the dark state and the sideport drive we study the time-resolved dynamics,
when driving the transmon array through the sideports while changing the phase φ between
sideport 1 and 2. The transition amplitudes from the ground state to non-local dark state
and bright state depend on the driving phase φ as [100]

|G〉 → |D3〉 : ~Ω
2
(
1 + eiφ

)
, (4.3)

|G〉 → |B4〉 : ~Ω
2
(
1− eiφ

)
. (4.4)

The drive of sideports 1 and 2 consists of a 240 ns long Gaussian envelope that is supplied
by the Quantum Machines Operator X and mixed with a coherent pump of a microwave
generator. Both mixers are connected to the same pump by splitting the signal to eliminate
unwanted phase differences between sideport 1 and 2. By selectively exciting the system
using microwave signals applied through the sideports with φ we can then either induce Rabi
oscillations between |G〉 and |D3〉 or drive the bright state. To determine the ground state
population, we conduct a reference measurement of the transmitted readout pulse for the case
where all transmons are tuned below the waveguide cutoff-frequency and take into accound
the dark state decay rate, explained in Sec. 4.3.2. Rabi-oscillations between |G〉 and |D3〉
are observed in Fig. 4.20 when the amplitude of the drive field Ω is increased and the phase
difference between the sideports matches φ = 2nπ (n ∈ Z). For an antisymmetric drive with
odd integer multiple φ = (2n − 1)π, we only drive the bright state |B4〉 which decays very
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Figure 4.20: Coherent control of the dark state. We apply a gaussian shaped pulse of total
length t = 240 ns and standard deviation of σ = 40 ns to observe Rabi oscillations between
the ground state |G〉 and the non-local four qubit dark state |D3〉 as a function of the Rabi
frequency Ω and the sideport phase difference φ. By applying the pulse through the sideports
we can set the phase φ independently. The ground state population is read out by sending a
5 µs long rectangular pulse through the waveguide, resonant with the transition between states
|G〉 and |B4〉. The right panel shows a vertical linecut at the white dashed lines of the colormap
for phase-difference φ = 0 and φ = π. The lower panel shows a horizontal linecut for a Rabi-
frequency of Ω/2π = 1 MHz. For the theory curve, we simulate the Hamiltonian Eq. (2.29) and
master equation Eq. (2.31) with the single transmon parameters and direct coupling strengths
J12 and J34. The conversion from transmitted amplitude to the ground state population is
explained in Sec. 4.3.2.

rapidly to the ground state with the rate ΓB,4. For phases that are neither fully symmetric
nor antisymmetric we drive both states simultaneously, where the respective drive strength
depends on the phase. We see that the relative phase of the local drives plays an important
role for the system and can be used to distinguish the degenerate bright and dark state.

Again, we measure the ground state population by employing the state dependent scattering
scheme, presented for the two transmon cases. Here, we can coherently scatter photons
between the ground state and superradiant state |B4〉, if the collective system is in the ground
state |G〉. This reduces the transmission through the waveguide, as can be seen from the 4
qubit resonance in Fig. 4.18a. If the dark state |D3〉 is populated, the microwave signal is not
scattered, resulting in unit transmission. The conversion from transmitted amplitude to the
ground state population is explained in Sec. 4.3.2, as we require the knowledge of the T1 time
first.

Instead of changing the excitation pulse amplitude we can also change its length which de-
creases the pulse width in frequency space. Figure 4.21a shows Rabi oscillations between
the ground state |G〉 and collective dark state |D3〉, where we increase the amplitude on the
vertical axis and the length on the horizontal axis of a Gaussian excitation pulse with con-
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Figure 4.21: Rabi-oscillations between |G〉 and |D3〉 for different parameters. a Varying
the pulselength and amplitude we observe more oscillations for longer pulses as the effective
width of the pulse in the frequency domain becomes smaller, hence a more frequency-selective
driving is possible. Finite decay time T1 limits to go to very long pulses. b When detuning the
drive frequency we observe a damped oscillation and a width in frequency that corresponds
to the pulse. The inset shows the indicated linecut, now plotted against the frequency of
the excitation pulse and fitted with a Gaussian function. c Setting the phase to φ = π, we
cannot observe Rabi-oscillations for equal pulse amplitudes on both sideports. Only when we
introduce unequal drive strengths, we recover oscillations. d With the phase fixed to φ = 0,
we have an optimal symmetrical drive that can drive the dark state |D3〉. As long as there is
enough symmetrical part in the drive, we can drive oscillations.

stant phase relation between the sideports φ = 0. The amplitude between sideports is equally
increased in this measurement. On the one hand, a longer pulse decreases the width in fre-
quency space and therefore leads to less driving of off-resonant transitions, mainly to |B13〉
and |B14〉, on the other hand, it longer excitation pulses compete with the finite lifetime of the
dark state |D3〉. For long pulses a substantial amount of dark state population has decayed
back into the ground state and we measure low transmitted voltages when we send a readout
pulse corresponding to a large ground state population. For short pulses but large amplitudes
the parasitic driving of other transitions is dominant such that the dark state preparation is
limited. We find the highest contrast, corresponding to the highest dark state population for
a pulse length of 240 ns. Thus, we set this as the length of the π-pulse to excite the dark state
qubit.
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Figure 4.22: Dark state Rabi simulations. a Varying the length and amplitude of the
dark state excitation pulse in the numerical simulation results in periodic Rabi oscillations.
For the amplitude we are limited by driving of higher excited states, while for the increasing
pulse length we are limited by the finite dark state lifetime T1 in good agreement with the
measurements in Fig. 4.21a. b For a detuned pulse we recover the measurement in Fig. 4.21b.

In Fig. 4.21b the Gaussian pulse with fixed pulse length of 240 ns, σns = 40 ns and φ = 0 is
detuned with respect to the transition frequency of |G〉-|D3〉. As the dark state |D3〉 is the
only long-lived state within this frequency range, the width on the frequency axis of a π pulse
is a convolution between the Gaussian excitation pulse and the natural qubit lineshape. We
can extract the width σ by fitting a Gaussian function y = A exp (−(x− µ)2/(2σ2)) + y0 to
the transmission in the inset of Fig. 4.21b, corresponding to the indicated linecut at the π
amplitude to obtain σ = 2.62 MHz. The system’s sensitivity to the symmetry of the pulse
is not only affected by the phase but also the amplitude difference between sideport 1 and
2. If we keep the phase and the length constant and vary the amplitude of sideport 1 and
2 individually, we introduce an amplitude gradient. The transmission amplitude for a phase
difference between the sideports 1 and 2 of φ = π in Fig. 4.21c shows that with symmetric
increase of power we cannot drive Rabi oscillations as we are mainly driving the collective
bright state |B4〉. The state immediately decays back into the ground state, thus shows a low
transmission amplitude. We can distort the drive symmetry by a power imbalance between the
drive ports which shows that amplitude and phase contribute to the resulting pulse symmetry.
In Fig. 4.21d the phase is set to φ = 0 corresponding to the dark state phase relation. We find
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good agreement in the theoretical prediction of the Rabi oscillations for the variable pulse
power, length and detuning in Fig. 4.22. By extracting the frequency width of a π-pulse we
find σ = 2.66 MHz, similar to the experimental data.

4.3.2 Dark State Characterization

A multi-qubit dark state in a waveguide QED setup presents a valuable resource for the
storage of quantum information in a dissipative environment [139]. The long-lived nature of
subradiant states opens up the possibility to prepare interesting states in interacting quantum
many-body systems and investigate the dynamics [140, 141], to study many-body localization
in disordered arrays [142, 143] or even realize a quantum computation and simulation platform
within an open quantum system [25]. The ultimate usability for scaling up experiments
depends on the achievable control and coherence time of the multi-qubit states. By measuring
the energy decay time T1 and coherence time T2 of the dark state |D3〉 we characterize the
hybridized coherence properties of four transmons and obtain a first benchmark on the scaling
by comparing them to the characteristic times of the two transmon systems.

Energy Relaxation

The energy relaxation time T1 is measured by populating the dark state with a π-pulse. The
power and relative phase between sideport 1 and 2 that are required to maximally populate
the dark state are extracted from the intersection of the dashed horizontal line and the vertical
line at φ = 0 of the Rabi measurement in Fig. 4.20. Choosing the amplitude with the highest
dark state population increases the contrast in the measurement. After a variable time τ
we perform the readout scheme described in Sec. 4.3.1. By fitting an exponential function
y = A exp (−τ/T1) + y0 we extract a time constant T1 = (1.71± 0.06) µs, which means
that we reduced the individual radiative coupling rates from roughly γr/2π = 15 MHz to
γD3 = 1

2π·1.7 µs = 93.6 kHz corresponding to a Purcell reduction of γr/γD3 = 160. Compared
to the bright state coupling rate γB4/2π = 57.7 MHz the decay dynamics of the dark state
is γB4/γD3 = 616 times slower. Fig. 4.23a shows a typical exponential decay of the excited
state |D3〉 into the ground state |G〉. As seen in the definition of the dark state decay time
in Eq. (2.58), the rate of the dark state energy relaxation is also affected by dephasing which
usually only affects the coherence of a single transmon qubit [34]. Recalling Eq. (2.58)

T1 =
(

2γr + γnr + γφ
2 −

1
2
√

16γ2
r + 4γrγφ + γ2

φ

)−1
, (4.5)

the decay time has contributions of the non-radiative decay rate γnr, as well as radiative rate
γr and dephasing γφ, where the latter cancel in the case that either of them is zero. If both
are non-zero this means that dephasing can increase the radiative decay such that it increases
the total energy relaxation rate, even in the absence of an intrinsic decay rate γnr = 0. In the
absence of dephasing, the decay time reduces to T1 = 1/γnr as in the ordinary definition.

After having measured the relaxation time, we are able to convert the y-axis from transmitted
amplitude to ground state population, as seen in most of the time-resolved measurement
plots throughout the thesis. We assume that all population is in the ground state when
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Figure 4.23: Dark state characteristic times. a After a π-pulse the population is in the dark
state, thus an immediate readout tone measures the ground state population is at a minimum.
Delaying the readout causes the dark state to relax back to the ground state due to intrinsic
decoherence mechanisms. For very long delays, we recover the full ground state population.
An exponential fit yields the characteristic energy relaxation time T1. b After a resonant
π/2-pulse the qubit Bloch vector is on the equator of the Bloch sphere, thus it is sensitive to
dephasing. It rotates with the frequency of the drive for a delay time τ . The action of the
second π/2-pulse is now conditioned on the relative phase between the qubit Bloch vector and
the drive. The readout is performed directly afterwards. For τ = 0 it brings the population
into |D3〉 just like a π-pulse but if a delay time is added the state will decohere back to the
ground state. A second pulse for very long delay times is similar to only one π/2-pulse, such
that we measure the population ∼ 0.5. A detuned drive results in different precessions for the
qubit Bloch vector and the drive vector, such that we can see the characteristic Ramsey fringes.
c Extracted measurements from b for different detunings. d By fitting the oscillations along
the delay axis in b for different detunings we can precisely calibrate the transition frequency
of |G〉-|D3〉. Extracted oscillation frequencies from the data in b is shown in circles while the
lines are linear fits.

no excitation pulse is applied and record the readout pulse as the background reference for
V|G〉 = 0.31 mV. For 3D transmons in cavities we measured a residual excited steady state
population due to thermal photons of around ρ11(t� T1) ∼ 5%, corresponding to an effective
qubit temperature of∼ 100 mK [136]. For the waveguide setup we did not measure the effective
qubit temperatures but assume ρ11(t� T1) = 0 for simplicity. For a background measurement
of the readout pulse at the decoherence free frequency with all transmons tuned away we record
an amplitude of Vbg = 6.45 mV. During the time that the readout pulse is played the dark
state already decays significantly due to its large T1 time and tro/T1 ∼ 2.9. Thus we can
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estimate the amplitude for a perfect dark state π-pulse by integrating the exponential decay
over the time of the readout

V ′|D3〉 =
(
Vbg − V|G〉

) tro
T1

tro/T1∫
0

exp (−x)dx = 1.968 mV (4.6)

In the experiment we detect a maximal transmitted voltage V|D3〉 = 2.01 mV, thus estimate
that we excite depopulate the ground state by ∼ 90% where we attribute the remaining 10%
to the excitation of faster decaying states and the decay during the duration of the Gaussian
excitation pulse with duration td = 240 ns and standard deviation σd = 40 ns.
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Figure 4.24: Long term characteristic times. Consecutive measurements of the charac-
teristic dark state T1 and T2 times over more than 12 h show a stable dark state, which is
important when trying to run longer experiments.

Even though the energy relaxation is already affected by dephasing and yields an upper bound
for the dark state qubit coherence we can conduct a Ramsey measurement [137] to extract
the decoherence time T2, which was defined in Eq. (2.56):

T2 =
(
γnr
2 + γφ +Kφ

)−1
. (4.7)

The Ramsey sequence consists of two π/2-pulses at the decoherence-free frequency ∆ = fd −
fπ = 0 with phase difference between the sideports φ = 0 and amplitude, such that P|G〉 = 0.5.
The excitation length is kept at td = 240 ns, similar to the power Rabi experiment and the
relaxation time measurement. The first pulse takes the dark state Bloch vector to a phase
sensitive point on the Bloch sphere, in the optimal case on the equator. Then the drive field
is switched off, thus the state evolves freely for a variable time τ before the second π/2-pulse
is applied. For a qubit with infinite coherence time the second pulse brings the qubit into the
excited state, thus the readout measures P|G〉 = 0. Pure dephasing arises from longitudinal
noise along the z-axis that changes the qubit frequency. The Bloch vector depolarization
of the azimuthal phase is affected by these stochastic frequency fluctuations and gives rise
to a dephasing rate γφ such that the drive phase does not match the qubit frequency and
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is driven less efficiently. In addition, the Bloch vector is subjected to transverse noise that
causes longitudinal energy relaxation such that the Bloch vector decays. In the extreme case
for a very long wait time τ the Bloch vector points to the ground state |G〉. Then, the second
pulse brings the qubit back to the equator and we measure P|G〉 = 0.5. In Fig. 4.23b we
observe Ramsey fringes when detuning the drive with respect to the |G〉-|D3〉 transition. This
is caused by the acquired phase difference of the drive and qubit during the time of the free
evolution. When the drive is resonant with the qubit, the state in the rotating frame always
stays on the y-axis of the Bloch sphere during the free evolution time, see Fig. 1.4. Thus,
the final state will be an equal superposition of |0〉 and |1〉 or here |G〉 and |D3〉 and does
not depend on the evolution time τ . For an off-resonant drive with detuning ∆, the state
precesses around z. The frequency of this precession is equal to the detuning between the
transition and drive frequency and the direction (negative or positive) is given by the sign of
the detuning ±∆. Therefore, we measure a sinusoidal time-dependent oscillation of the final
state for a detuned drive in Fig. 4.23b. We can see that the drive detuning scales linearly with
the Ramsey oscillation frequency, thus the Ramsey detuning serves as an accurate method to
determine the qubit frequency, shown in Fig. 4.23d. By extracting the linecut at ∆ = 9 MHz
from Fig. 4.23b we fit a function y = A cos(ωR + ϕ0) exp(−τ/T2) + y0 to determine the
characteristic coherence time T2 = (0.58± 0.06) µs, shown in Fig. 4.23c.

The measurements of the energy relaxation time T1 and coherence time T2 are repeated over
12 h to probe the robustness of the dark state. The result is shown in Fig. 4.24. Even
though we record a slight temperature change of ∼ 3 mK during the measurement cycle,
the characteristic times are relatively stable, such that the dark state remains a resource of
coherence.

4.3.3 Two-Excitation Manifold

The Rabi measurement in Fig. 4.20 shows a rapid saturation of the ground state population
at P|G〉 ∼ 0.5 when increasing the drive amplitude. The inability to Rabi flop between the
ground state |G〉 and dark state |D3〉 for a constant pulse length indicates that the population
leaks into parasitic levels. This can either happen when the sideports phase relation is not
perfectly symmetric and we drive the bright state |B4〉 that decays more than 600 times faster
than the dark state |D3〉 or by driving two-photon and off-resonant transitions. It is necessary
to understand the dynamics of the rich transition manifolds in order to improve the dark state
qubit but also to design the properties of interesting many-body systems.

To study the leakage into the two-excitation manifold of the collective four-transmon system,
we concatenate a spectroscopy pulse after populating the dark state |D3〉. The pulse sequence
to obtain the measurement in Fig. 4.25a consists of a π-pulse on the |G〉-|D3〉 transition with
phase φ = 0 and a long Gaussian spectroscopy pulse with σ = 200 ns with constant amplitude
and varying spectroscopy frequency ω and phase φ applied through the sideports, followed by a
5 µs long rectangular readout pulse through the waveguide. Fig. 4.25a shows the ground state
population after the two-pulse protocol into the two-excitation manifold. The blue regions
correspond to transitions that can be driven from the dark state |D3〉 and rapidly decay, thus
populate the ground state faster. The spectroscopy relative phase unveils the symmetry and
energy of the states in the two-excitation manifold. When the spectroscopy pulse is resonant
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Figure 4.25: Phase-sensitive spectroscopy of the two-excitation manifold. a The
ground state population after of the two-pulse protocol with varying spectroscopy frequency
and phase shows transitions that can be driven from the dark state |D3〉. b Schematic of
the experiment and pulse sequence. c The simulation shows qualitative agreement with the
measurement. To also see the local dark states we have to assume an electric field gradient of
the drive within the local pairs.

with a transition, e.g. |W5〉, |W6〉, |B13〉 or |B14〉 the system is reset to the ground state due to
the rapid decay of these states dominantly via the bright state |B4〉. The notation is equivalent
to the theory Section 2.6 that we repeat for convenience. We denote the collective states by
|Di〉, |Bi〉 and |Wi〉 where the letter refers to their waveguide radiation characteristics: Dark,
bright or weakly radiant. The subscript is an ascending enumeration based on their energy
value. The collectiveness of these states is apparent in the phase dependence of the measured
ground state population. In comparison, the two lower red lines correspond to the local dark
state transitions |G〉-|D1〉 and |G〉-|D2〉, thus show no change in phase change φ. The upper
red line corresponds to the |G〉-|D3〉 transition that is driven by the spectroscopy pulse, thus
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shows a phase dependence but no reset. These observations are consistent with the numerical
simulation of the model Hamiltonian Eq. (2.31) in Fig. 4.25c. The simulation shows that
indeed the states of the two-excitation manifold have to be coupled to the dark state |D3〉 and
possess a finite decay rate to the bright state |B4〉, which then decays to the ground state |G〉.
Therefore we measure a high ground state population when the spectroscopy pulse is resonant
with a transition that can be driven from |D3〉. The ability to drive collective states depends
on the spectroscopy phase whereas local states can be driven with any phase, as long as the
local drives also have an electric field gradient within the pairs. Comparing the measurement
to the state manifold of Fig. 2.6, there are six other states in the two-excitation manifold that
are not visible in the spectroscopy since they cannot be driven from the dark state |D3〉 or
do not decay to the bright state |B4〉. During the time of the spectroscopy pulse, which is on
the same order as the lifetime of |D3〉, a part of the population decays to the ground state.
As a consequence, the phase sensitive transition between states |G〉 and |D3〉 is visible.

The only parameters that are needed for the simulation are the single transmon parameters
and direct coupling strengths given in table 4.3. In order to observe the local dark states
|D1〉 and |D2〉 in the simulation, we have included an amplitude gradient of the local drives,
such that the power on transmons Q2 and Q4 is three quarters of that on Q1 and Q3. This
asymmetry produces an additional driving term that is always antisymmetric with respect to
the exchange of transmons within the pair. These states do not show a phase dependence as
they are only coupled to one drive port.

It is essential to notice that a transmon is a bosonic multilevel system with anharmonicity
α. The many-body excited state manifolds in bosonic systems are fundamentally different to
those of two-level emitters. For example, in our case of four transmons, the two-excitation
manifold includes 10 basis states, whereas that for two-level emitters would have only 6 states.
The importance to differentiate between two-level systems and transmons increases with the
total excitation number. Here, the additional states are the doubly excited states of the
transmons, which make an important contribution to the collective superposition states |W5〉,
|W6〉, |B14〉 and |B13〉 that we observe in Fig. 4.25. States |W5〉 and |W6〉 are unique to bosonic
systems, as they are strongly affected by the negative transmon anharmonicites and are not
reproducible by considering two-level systems [87]. Apart from the multi-excitation states,
energy level and decay characteristics of two-level emitters are recovered in the hard-core
boson limit α(N−1)� γr, J12, J34, where the transmon anharmonicity α dominates over both
the waveguide-mediated interactions γ and the direct capacitive coupling strengths Jij . The
experimental values for the data shown in this thesis are γ/α(N−1) ≈ 0.1 and Jij/α(N−1) ≈
0.2 resulting in an energy level structure that is clearly different from arrays of qubits and
harmonic oscillators. In general, in bosonic waveguide quantum electrodynamics systems, the
number of bright and dark states is higher and the bright states are brighter compared to
the case of two-level emitters. The reason is a larger and more versatile many-body Hilbert
space [87].

4.3.4 Optimizing the Protection of the Dark State

The spectroscopy shows that the transitions |D3〉 to |B13〉 and |B14〉 not only overlap with
the transition of the dark state qubit |G〉-|D3〉 but also share the same phase condition on
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the drive. Consequently, we attribute the damping of the Rabi oscillations in Fig. 4.20 to the
population of these states as we increase the drive amplitude. Remarkably, this leakage effect
can be reduced dramatically by increasing the coupling to the waveguide so much that the
unwanted excitation to this state can be adiabatically eliminated [144]. Ideally, increasing
the waveguide coupling does not affect the coherence and lifetime of the dark state, only the
states outside the decoherence-free subspace decay faster. In contrast to conventional solid-
state qubits, a symmetry-engineered multi-qubit system makes it possible to control the decay
properties of the leakage states independently of the computational states.
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Figure 4.26: Optimizing the dark state protection. Simulated dark state populations (top
row) and purities of the state of the system (bottom row) as a function of Rabi pulse length
for different values of Rabi frequencies Ω and waveguide couplings γ. System parameters have
been taken as average of experimental values in Tab. 4.1, corresponding to α/2π = 218 MHz
and Jij/2π = 45 MHz.

In Fig. 4.20, we observe that the Rabi drive between the ground state |G〉 and the dark
state |D3〉 excites also the states in the two-excitation manifold, mainly the states |B13〉 and
|B14〉 that subsequently decay to the bright state |B4〉. The effective anharmonicity of the
dark state qubit {|G〉 , |D3〉} is defined by the energy difference between the nearest transition
energies Ũ , where we adapted the notation for the bosonic on-site interaction. Thus, with the
experimental parameters the anharmonicity is Ũ/2π = [(ωD3,B14)− (ωG,D3)]/2π ≈ −15 MHz,
where ωj/2π is the corresponding transition frequency of transition j. As seen in Fig. 2.6,
this is approximately ∼ 1/4 of the waveguide-coupling rate of the state γB14/2π ≈ 60 MHz.
Additionally, the phase relation between the drive ports cannot be adjusted as the states
share the same symmetry. This explains why population can leak from the state |D3〉 to the
state |B14〉 when it is driven.

With single solid-state qubits such as transmons [11], the leakage can be minimized either by
driving with a smaller amplitude (Rabi frequency) or by engineering larger anharmonicities
between the computational state and the higher excited states. Here, we have an additional
possibility: engineer the decay to the waveguide γ so large that the leakage can be adiabat-
ically eliminated [144]. In Fig. 4.26, we demonstrate this effect in numerical simulations of
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the system Hamiltonian where we use the experimental parameters of table 4.1 but assume
identical qubit-waveguide coupling in the range of γ/2π = 2 - 197 MHz. The simulation starts
from the ground state |ψ(t = 0)〉 = |G〉. For a dark state qubit that is not subjected to deco-
herence we would expect oscillations between |G〉 and |D3〉 that show no damping for longer
excitation pulses. Additionally, the state would remain a pure state. However, the ground
state and the dark state do not form a perfect qubit because of the leakage to two-photon
states |B13〉 and |B14〉, which are almost resonant with the driving frequency. There are two
possibilities to improve the system and obtain better Rabi oscillations. First, one could use a
weaker but longer Rabi pulse. This decreases the off-resonant driving, and more population
remains in the dark state. However, longer pulses mean that non-radiative decay of the dark
state, which has not been included in the simulations, decreases the population further. An-
other way is to increase the coupling to the waveguide, where γ/2π = 15 MHz is the coupling
in the experiment. We observe that the larger the coupling γ, the better the Rabi oscillations
become. The decay of the population amplitude is also decreased. Similarly the state is
more pure for larger γ. However, as is evident from the results, the improvement begins to
saturate, and also approximations made in the master equation would break with too large γ.
On the other hand, for weaker coupling the Rabi becomes much worse. It can clearly be seen
that increasing the coupling (decay rate) to the waveguide decreases leakage effects from the
decoherence-free subspace resulting in a weaker damping of the Rabi oscillations between the
states |G〉 and |D3〉 and an increased overall total purity of the driven system. The coherence
time T2 of the dark state is independent of the waveguide coupling γ, as can be seen from
Eq. (2.56). The lifetime T1 in Eq. (2.58) only depends weakly on γ when it becomes large
compared to the other decoherence rates.

In the numerical simulations, we observe that the higher excitation states become only weakly
excited and have negligible dynamics on the relevant timescales when the waveguide coupling
is large and the Rabi frequency weak enough. In this case, the results can also be analytically
explained by adiabatically eliminating the higher excitation states and reducing the dynamics
only into the one-excitation manifold [144]. For simplicity we consider only the state |B14〉 in
the two-excitation manifold, but all the results apply also for the state |B13〉. Other states in
the two-excitation manifold are only very weakly coupled to the state |D3〉 either by symmetry
exclusion or energy difference. This reduces the discussion to the ground state |G〉, the bright
state |B4〉 and the dark state |D3〉 as well as the state |B14〉 from the two-excitation manifold.
The driven Hamiltonian for the three states reads

Ĥ = ~ω1 |B4〉 〈B4|+ ~ω1 |D3〉 〈D3|+ ~(2ω1 − Ũ) |B14〉 〈B14|+ Ĥd(t), (4.8)

where we drive the system with a Rabi drive that couples the ground state to the dark state,
and the dark state to the state |B14〉:

Ĥd(t)/~ = 2Ω cos(ωt) (|G〉 〈D3|+ |D3〉 〈G|) + 2Ω̃ cos(ωt) (|D3〉 〈B14|+ |B14〉 〈D3|) . (4.9)

We choose to drive the system resonantly ω = ω1, which yields the driven Hamiltonian in the
rotating frame

Ĥ ′/~ = Ω (|G〉 〈D3|+ |D3〉 〈G|) + Ω̃ (|D3〉 〈B14|+ |B14〉 〈D3|)− Ũ |B14〉 〈B14| . (4.10)
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In addition to the drives we include the decay rates of the states |B4〉 and |B14〉 represented
through the master equation

˙̂ρ =− i

~
[Ĥ ′, ρ̂] +

(
L̂B4 ρ̂L̂

†
B4
− 1

2 ρ̂L̂
†
B4
L̂B4 −

1
2 L̂
†
B4
L̂B4 ρ̂

)
+ (4.11)

+
(
L̂B14 ρ̂L̂

†
B14
− 1

2 ρ̂L̂
†
B14

L̂B14 −
1
2 L̂
†
B14

L̂B14 ρ̂

)
, (4.12)

where the jump operators describe the decay of the bright state L̂B4 =
√

ΓB4 |G〉 〈B4| at rate
ΓB4 and the decay of the state |B14〉 L̂B14 =

√
ΓB14 |B3〉 〈B14| at rate ΓB14 .
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Figure 4.27: Adiabatic elimination: Effect of the two-excitation manifold on the
driven dark state. Effective AC Stark shift δ and the decay rate of the dark state ΓD as a
function of the decay rate of the state of the two-excited state manifold ΓB14 in Eq. (4.16). The
maximum of the decay rate ΓD occurs at ΓB14/Ũ = 2. The experimental value corresponding
to the state |B14〉 is indicated by vertical dashed line ΓB14/Ũ ≈ 3.95.

By following Reference [144] and assuming that the Rabi amplitude Ω is not too large, we
can adiabatically eliminate the state |B14〉 resulting in the effective Hamiltonian

Ĥeff/~ = Ω (|G〉 〈D3|+ |D3〉 〈G|) + 4Ω̃2Ũ

4Ũ2 + Γ2
B14

|D3〉 〈D3| , (4.13)

where the energy of the dark state is AC Stark shifted by δ = 4Ω̃2Ũ

4Ũ2+Γ2
B14

. This yields a dark

state decay through the bright state

L̂D =

√√√√ΓB14
4Ω̃2

Γ2
B14

+ 4Ũ2
eiθ |B4〉 〈D3| =

√
ΓDeiθ |B4〉 〈D3| (4.14)

at the rate ΓD = ΓB14
4Ω̃2

Γ2
B14

+4Ũ2 . Notice that if the decay rate of the excited state dominates

over the detuning ΓB14 � Ũ then both the AC Stark shift and the dark state decay rate
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decrease as a function of the excited state decay rate ΓB14 , depicted in Fig. 4.27, where the
AC Stark shift on the dark state δ is defined as

δ = 4Ω̃2Ũ

4Ũ2 + Γ2
B14

≈


Ω̃ Ω̃
Ũ
, Ũ

ΓB14
� 1

Ω̃ Ω̃
Ũ

(
2Ũ

ΓB14

)2
, Ũ

ΓB14
� 1

, (4.15)

and the redefined dark state decay rate ΓD as

ΓD = ΓB14
4Ω̃2

Γ2
B14

+ 4Ũ2
≈


ΓB14

(
Ω̃
Ũ

)2
, Ũ

ΓB14
� 1

ΓB14

(
Ω̃
Ũ

)2 (
2Ũ

ΓB14

)2
, Ũ

ΓB14
� 1.

(4.16)

This equation yields a reduction of ΓD as a function of ΓB14 , which itself depends on the
transmon-waveguide coupling γ. Thus, the simulations in Fig. 4.26 consistently show the
increased purity and amplitude of Rabi oscillations when the waveguide coupling is increased.
This shows that the adiabatic elimination of the higher excited states promises the possibility
to further optimize the dark state coherent control.



CHAPTER 5
Conclusions and Outlook

In the scope of the thesis, we realized an interacting multi-qubit system of four supercon-
ducting transmon qubits that are coupled to a common waveguide. The individual transmons
are studied by extracting their steady-state properties in a measurement of the waveguide
transmission. The waveguide gives us access to the transitions that couple to the propagating
electromagnetic field and additionally mediates interactions between different qubits. Tuning
two qubits into resonance with each other, we distinguish between the directly coupled pair
and the distant pairs. The direct capacitive coupling strength is evident in the avoided cross-
ing of the fundamental transmon transitions. The coupling gives rise to a non-degenerate
local subradiant and superradiant state that we utilize to build a dark state qubit and a state
dependent scattering readout scheme. Here, the antisymmetric drive for the dark state arises
from the sideport field gradient across the transmon pair. The waveguide-mediated interac-
tion at an effective separation of half a wavelength yields collective decay with a degenerate
dark and bright state. Here, we can employ the same scheme but are now required to uti-
lize both sideports and adjust the drive-phase with the control electronics, to switch between
driving of the dark or bright state. The extracted dark state lifetimes show a maximum
at a specific frequency that we identify as the optimal tuning point for maximal correlated
decay. The four-transmon system has three dark states - one for each local pair and one
global - and one bright state in the one-excitation manifold. In a Rabi measurement, where
we change the phase-relation between the local sideports we observe the dependence of the
global dark and bright states on the drive symmetry. To characterize the dark state for its
usability for quantum information processing we extract its lifetime and coherence time and
explore the two-excitation manifold. In the analysis it is crucial to go beyond the two-level
approximation to accurately describe the higher excitation manifolds as they drastically differ
from the qubit and harmonic oscillator approach [87]. We find that substantial leakage into
higher lying transitions cannot be eliminated by utilizing the possibility to drive the system
antisymmetrically and symmetrically but we instead outline a possible engineering approach
to adiabatically eliminate fast decaying states in the two-excitation manifold.

In conclusion, the experiment demonstrates that collective dark states constitute a resource
for coherent quantum information and can be controlled by local drives with an adjustable
phase relation. The collective four-transmon system comprises a one-excitation state manifold
with long lived dark states, as well as one rapidly decaying bright state. In particular, we
achieve an effective protection from the waveguide, leading to a decrease of the relaxation rate
by a factor of 160 compared to the single qubit coupling rate, or a factor of 650 compared to
the collective bright state. The degenerate bright state can be used to read out the system.
Whereas in conventional resonator-based architectures, the detuning between the readout
cavity and the qubit plays an important role for its coherence time, the experiment shows
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that the protection can be engineered by taking into account the symmetry properties of the
system while both transitions are resonant. Unlike in previous experiments, the observation of
the weakly radiant states |W5〉 and |W6〉 are a direct manifestation of the transmons’ bosonic
nature and demonstrates the necessity to go beyond the two-level approximation when trying
to engineer many-body physics with artificial atoms [87].

Looking forward, coherent control of multi-qubit dark states opens up the possibility to inves-
tigate dynamics of interacting quantum many-body systems [140, 141], to study many-body
localization in disordered arrays [142, 143] or even realize a quantum computation and simu-
lation platform within an open quantum system [25]. On the one hand, adiabatic elimination
of the higher excited states promises the possibility to further optimize the coherent control
of the dark state; on the other hand, the two-excitation manifold can be used to reset the
dark state qubit and transfer quantum information into itinerant photons. This mechanism is
a source for cluster state creation [145], while the cascaded decay can be utilized to study en-
tanglement between photons of different frequencies. Finally, the interplay between long-lived
subradiant states and weakly radiating states can give new insights into incoherent scattering
properties and photon-photon correlations [146].

The experimental results presented in this thesis open the door for further investigation of
the system. Overall improvements to the setup, like cold attenuators in the input lines and
more isolation in the output lines of the cryostat will help to further increase the dark state
coherence properties. For engineering a better isolation from the environment the qubits
and qubit-photon bound states can serve as a useful tool to quantify the changes in the
input and output lines. The temperature of the propagating microwaves can be investigated
by primary thermometry with a transmon qubit [79]. This can potentially be extended by
utilizing the (interacting) qubit-photon bound states. By placing the qubits closer to the input
or output of the rectangular waveguide they are asymmetrically exposed to one of the two.
By coupling the qubits weaker to the waveguide or utilizing the tunable linewidth of the dark
state, the qubit transitions can be analyzed in various measurements to learn more about
the contributing noise sources [80]. The transmons that were used in the experiments are
from the first generation of fabricated samples in the new cleanroom and should be replaced
with an advanced design. Especially the large junction areas give rise to many two-level
systems that affect the dark state coherence. As can be seen in the avoided-crossing flux
maps in Appendix B, there are signatures of interacting two-level systems, especially also
close to the decoherence-free frequency.

The immediate follow-up experiment should verify the adiabatic elimination scheme we pro-
posed in Sec. 4.3.4 by realizing a stronger qubit-waveguide coupling. With better control over
the dark state two-qubit gates can be realized, either by creating a chain of four qubits [25]
or by utilizing the auxiliary states in the current setup. Adding parametric amplifiers to the
measurement apparatus enables the extraction of correlations between itinerant microwaves
in a much less time consuming manner such that tomography of the emitted radiation can be
used to calculate the scattering matrix of the emitter [147]. This opens up new possibilities
for further developments within the quantum optics toolbox. An ongoing experiment is the
utilization of the non-linear dispersion close to the waveguide cutoff frequency that enables
the focusing of a chirped microwave pulse that can be used for addressing individual emitters
within an array [109].
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APPENDIX A
Single Qubit Circle-Fits

Here we show the results of the circle-fits [111, 112] for the individual transmons at the
frequencies, effectively corresponding to λ/2. Even though it seems that the data is even
lower than the fit, it is limited by noise at these low transmission amplitudes.
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Figure A.1: Fit results. QL = 430± 2, Qc = 440± 1, Qint = 18846± 1271, fr = 7.346 GHz,
κL/2π = (17088± 71) kHz, κc/2π = (16698± 56) kHz, κint/2π = (390± 26) kHz
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Figure A.2: Fit results. QL = 504± 2, Qc = 520± 2, Qint = 15885± 1066, fr = 7.317 GHz,
κL/2π = (14530± 61) kHz, κc/2π = (14069± 48) kHz, κint/2π = (461± 31) kHz
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Figure A.3: Fit results. QL = 506 ± 2, Qc = 527 ± 2, Qint = 12545 ± 680, fr = 7.322 GHz,
κL/2π = (14476± 59) kHz, κc/2π = (13892± 46) kHz, κint/2π = (584± 32) kHz
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Figure A.4: Fit results. QL = 420± 2, Qc = 431± 2, Qint = 17226± 1115, fr = 7.345 GHz,
κL/2π = (17474± 75) kHz, κc/2π = (17048± 59) kHz, κint/2π = (426± 28) kHz



APPENDIX B
Avoided Crossings
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Figure B.1: Avoided crossings between qubits Q1 and Q2 at different frequencies. The y-axis
shows the probe frequency and the x-axis the coil through the coil 3 that is used to vary the
flux through the SQUID loop of the transmons.
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The capacitively coupled qubits Q1 and Q2, as well as the other pair Q3 and Q4 can be
tuned in resonance at different frequencies. The additional avoided crossings that appear are
attributed to a coherent interaction with two-level systems. When a two-level-system was
present the dark state coherence properties were deteriorated. This can also be witnessed in
the missing decay times T1 close to those frequencies in Fig. 4.14.
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Figure B.2: Same as Fig. B.1 but for Qubits Q3 and Q4.



APPENDIX C
Two-Qubits Power Dependence

C.1 Measurements

Increasing the power when tuning the transmon into resonance reveals their multi-level na-
ture.
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Figure C.1: Tuning the direct coupled transmons into resonance while increasing the probe
power shows the two photon transition |0〉-|2〉 of the transmon and the transition |1〉-|2〉.
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Figure C.2: Two distant transmons are tuned into resonance at a frequency corresponding to
∼ 3λ/4 while increasing the probe power.
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Figure C.3: Two distant transmons are tuned into resonance at a frequency corresponding to
∼ λ/2 while increasing the probe power.
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C.2 Simulations

The high power simulations show qualitatively consistent results with the measurements.
Especially all the additional features for high power can be explained by taking into account
the mulit-level nature of the transmon, driving either the two-photon transition |0〉-|2〉 and
the transition |1〉-|2〉.

a b c

Figure C.4: Top to bottom increasing power for two transmon tuned into resonance. a Direct
coupled transmon pair. b Two transmons separated by λ/2. c Two transmons separated by
3λ/4.



APPENDIX D
Dark State Calibration
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Figure D.1: Dark state decay time measurements. For a capacitively coupled transmon
pair we can measure the decay time of the dark state. In order to find the perfect symmetry
point we slowly tune the coil current and measure the decay time to find the longest dark state
lifetime.

To calibrate the dark state lifetimes there are many flux-tuning parameters. By recording the
map like depicted in Fig. D.1 we can measure the lifetime for a capacitively coupled pair for
slight detunings between the individual transmon transitions. Therefore, we sweep the coil
current to only detune one of the qubits while keeping the other one at a constant frequency.
By measuring the decay time at every flux point we obtain the map. Then the other qubit is
tuned and a similar map is recorded. This ensures that we measure the longest possible T1
time and are not limited by a slight qubit-qubit detuning that would result in a waveguide
coupling of the dark state and could potentially limit its lifetime.
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