-
C. Baroni, G. Gori, M. Chiofalo, A. Trombettoni Interacting two-mode model for ultracold quantum interferometers,
J. Phys. Conf. Ser. 12030 (2023-12-18),
http://dx.doi.org/10.1088/1742-6596/2667/1/012030 doi:10.1088/1742-6596/2667/1/012030 (ID: 721172)
Toggle Abstract
Ultracold gases provide an excellent platform for the realization of quantum interferometers. In the case of implementations based on Bose-Einstein condensates in double well potentials, an effective two-mode model allows to study how the interactions among particles affect the sensitivity of the interferometer. In this work we review the properties of such a model and its application to interferometric protocols, focusing on the achievable sensitivity in the presence of interactions turned on. In particular we study the full interferometric sequence when the initial state is a Twin Fock state, which is perfectly number squeezed. We found that in the presence of interactions and for certain values of the holding time in which a phase difference between the two modes is accumulated, the same sensitivity as in the non interacting case is recovered when using the population imbalance between the two wells as observable. Finally, we characterize the behaviour of the sensitivity by looking at the δ-derivative and the variance of the operator used for the measurement and studying the squeezing parameters.
-
C. Baroni, B. Huang, I. Fritsche, E. Dobler, G. Anich, E. Kirilov, R. Grimm, M. A. Bastarrachea-Magnani, P. Massignan, G. Bruun Mediated interactions between Fermi polarons and the role of impurity quantum statistics,
Nature Phys. 20 (2023-10-26),
http://dx.doi.org/10.1038/s41567-023-02248-4 doi:10.1038/s41567-023-02248-4 (ID: 721077)
Toggle Abstract
The notion of quasi-particles is essential for understanding the behaviour of complex many-body systems. A prototypical example of a quasi-particle, a polaron, is an impurity strongly interacting with a surrounding medium. Fermi polarons, created in a Fermi sea, provide a paradigmatic realization of this concept. As an inherent and important property such quasi-particles interact with each other via modulation of the medium. While quantum simulation experiments with ultracold atoms have significantly improved our understanding of individual polarons, the detection of their interactions has remained elusive in these systems. Here, we report the unambiguous observation of mediated interactions between Fermi polarons consisting of K impurities embedded in a Fermi sea of Li atoms. Our results confirm two landmark predictions of Landau's Fermi-liquid theory: the shift of the polaron energy due to mediated interactions, linear in the concentration of impurities, and its sign inversion with impurity quantum statistics. For weak to moderate interactions between the impurities and the medium, we find excellent agreement with the static (zero-momentum and energy) predictions of Fermi-liquid theory. For stronger impurity-medium interactions, we show that the observed behaviour at negative energies can be explained by a more refined many-body treatment including retardation and molecule formation
-
C. Baroni, B. Huang, I. Fritsche, E. Dobler, G. Anich, E. Kirilov, R. Grimm, M. A. Bastarrachea-Magnani, P. Massignan, G. Bruun Mediated interactions between Fermi polarons and the role of impurity quantum statistics,
Nature Phys. (2023-10-26),
http://dx.doi.org/10.1038/s41567-023-02248-4 doi:10.1038/s41567-023-02248-4 (ID: 721140)
Toggle Abstract
The notion of quasi-particles is essential for understanding the behaviour of complex many-body systems. A prototypical example of a quasi-particle is a polaron, formed by an impurity strongly interacting with a surrounding medium. Fermi polarons, created in a Fermi sea, provide a paradigmatic realization of this concept. Importantly, such quasi-particles interact with each other via the modulation of the medium. However, although quantum simulation experiments with ultracold atoms have substantially improved our understanding of individual polarons, the detection of their interactions has so far remained elusive. Here we report the observation of mediated interactions between Fermi polarons consisting of K impurities embedded in a Fermi sea of Li atoms. Our results confirm two predictions of Landau’s Fermi-liquid theory: the shift in polaron energy due to mediated interactions, which is linear in the concentration of impurities; and its sign inversion with impurity quantum statistics. For weak-to-moderate interactions between the impurities and the medium, our results agree with the static predictions of Fermi-liquid theory. For stronger impurity–medium interactions, we show that the observed behaviour at negative energies can be explained by a more refined many-body treatment including retardation and dressed molecule formation.