-
A. Kruckenhauser, R. van Bijnen, T. Zache, M. Di Liberto, P. Zoller High-dimensional SO(4)-symmetric Rydberg manifolds for quantum simulation,
Quantum Sci. Technol. 8 (2022-12-19),
http://dx.doi.org/10.1088/2058-9565/aca996 doi:10.1088/2058-9565/aca996 (ID: 720885)
Toggle Abstract
We develop a toolbox for manipulating arrays of Rydberg atoms prepared in high-dimensional hydrogen-like manifolds in the regime of linear Stark and Zeeman effect. We exploit the SO(4) symmetry to characterize the action of static electric and magnetic fields as well as microwave and optical fields on the well-structured manifolds of states with principal quantum number n. This enables us to construct generalized large-spin Heisenberg models for which we develop state-preparation and readout schemes. Due to the available large internal Hilbert space, these models provide a natural framework for the quantum simulation of Quantum Field Theories, which we illustrate for the case of the sine-Gordon and massive Schwinger models. Moreover, these high-dimensional manifolds also offer the opportunity to perform quantum information processing operations for qudit-based quantum computing, which we exemplify with an entangling gate and a state-transfer protocol for the states in the neighborhood of the circular Rydberg level.
-
M. Di Liberto, A. Kruckenhauser, P. Zoller, M. Baranov Topological phonons in arrays of ultracold dipolar particles,
Quantum 6 731 (2022-05-31),
http://dx.doi.org/10.22331/q-2022-06-07-731 doi:10.22331/q-2022-06-07-731 (ID: 720680)
Toggle Abstract
The notion of topology in physical systems is associated with the existence of a nonlocal ordering that is insensitive to a large class of perturbations. This brings robustness to the behaviour of the system and can serve as a ground for developing new fault-tolerant applications. We discuss how to design and study a large variety of topology-related phenomena for phonon-like collective modes in arrays of ultracold polarized dipolar particles. These modes are coherently propagating vibrational excitations, corresponding to oscillations of particles around their equilibrium positions, which exist in the regime where long-range interactions dominate over single-particle motion. We demonstrate that such systems offer a distinct and versatile tool to investigate topological effects that can be accessed by choosing the underlying crystal structure and by controlling the anisotropy of the interactions. Our results show that arrays of dipolar particles provide a promising unifying platform to investigate topological phenomena with phononic modes.
-
C. Dlaska, K. Ender, G. B. Mbeng, A. Kruckenhauser, W. Lechner, R. van Bijnen Quantum optimization via four-body Rydberg gates,
Phys. Rev. Lett. 128 (2022-03-24),
http://dx.doi.org/10.1103/PhysRevLett.128.120503 doi:10.1103/PhysRevLett.128.120503 (ID: 720749)
Toggle Abstract
There is a large ongoing research effort towards obtaining a quantum advantage in the solution of combinatorial optimization problems on near-term quantum devices. A particularly promising platform for testing and developing quantum optimization algorithms are arrays of trapped neutral atoms, laser-coupled to highly excited Rydberg states. However, encoding combinatorial optimization problems in atomic arrays is challenging due to the limited inter-qubit connectivity given by their native finite-range interactions. Here we propose and analyze a fast, high fidelity four-body Rydberg parity gate, enabling a direct and straightforward implementation of the Lechner-Hauke-Zoller (LHZ) scheme and its recent generalization, the parity architecture, a scalable architecture for encoding arbitrarily connected interaction graphs. Our gate relies on onetime-optimized adiabatic laser pulses and is fully programmable by adjusting two hold-times during operation. We numerically demonstrate an implementation of the quantum approximate optimization algorithm (QAOA) for a small scale test problem. Our approach allows for efficient execution of variational optimization steps with a constant number of system manipulations, independent of the system size, thus paving the way for experimental investigations of QAOA beyond the reach of numerical simulations.
-
S. Hollerith, S. Srakaew, D. Wei, A. Rubio López, D. Adler, P. Weckesser, A. Kruckenhauser, V. Walther, R. van Bijnen, J. Rui, C. Gross, I. Bloch, J. Zeiher Realizing distance-selective interactions in a Rydberg-dressed atom array,
Phys. Rev. Lett. 128 113602 (2022-03-14),
http://dx.doi.org/10.1103/PhysRevLett.128.113602 doi:10.1103/PhysRevLett.128.113602 (ID: 720748)
Toggle Abstract
Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits. Atomic arrays are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states. Typically, isolating pairs during gate operation is difficult because Rydberg interactions feature long tails at large distances. Here, we engineer distance-selective interactions that are strongly peaked in distance through off-resonant laser coupling of molecular potentials between Rydberg atom pairs. Employing quantum gas microscopy, we verify the dressed interactions by observing correlated phase evolution using many-body Ramsey interferometry. We identify atom loss and coupling to continuum modes as a limitation of our present scheme and outline paths to mitigate these effects, paving the way towards the creation of large-scale entanglement.