-
M. Di Liberto, N. Goldman Orbital order and chiral currents of interacting bosons with π-flux,
(2021-11-26),
arXiv:2111.13572 arXiv:2111.13572 (ID: 720785)
Toggle Abstract
Higher Bloch bands provide a remarkable setting for realizing many-body states that spontaneously break time-reversal symmetry, offering a promising path towards the realization of interacting topological phases. Here, we propose a different approach by which chiral orbital order effectively emerges in the low-energy physics of interacting bosons moving on a square plaquette pierced by a π-flux. We analyze the low-energy excitations of the condensate in terms of two orbital degrees of freedom and identify a gapped collective mode corresponding to the out-of-phase oscillations of the relative density and phase of the two orbitals. We further highlight the chiral nature of the ground state by revealing the cyclotron-like dynamics of the density upon quenching an impurity potential on a single site. Our single-plaquette results can be used as building blocks for extended dimerized lattices, as we exemplify using the BBH model of higher-order topological insulators. Our results provide a distinct direction to realize interacting orbital-like models that spontaneously break time-reversal symmetry, without resorting to higher bands nor to external drives.
-
M. Di Liberto, A. Kruckenhauser, P. Zoller, M. Baranov Topological phonons in arrays of ultracold dipolar particles,
(2021-08-26),
arXiv:2108.11856 arXiv:2108.11856 (ID: 720680)
Toggle Abstract
The notion of topology in physical systems is associated with the existence of a nonlocal ordering that is insensitive to a large class of perturbations. This brings robustness to the behaviour of the system and can serve as a ground for developing new fault-tolerant applications. We discuss how to design and study a large variety of topology-related phenomena for phonon-like collective modes in arrays of ultracold polarized dipolar particles. These modes are coherently propagating vibrational excitations, corresponding to oscillations of particles around their equilibrium positions, which exist in the regime where long-range interactions dominate over single-particle motion. We demonstrate that such systems offer a distinct and versatile tool to investigate topological effects that can be accessed by choosing the underlying crystal structure and by controlling the anisotropy of the interactions. Our results show that arrays of dipolar particles provide a promising unifying platform to investigate topological phenomena with phononic modes.
-
M. Jamotte, N. Goldman, M. Di Liberto Strain and pseudo-magnetic fields in optical lattices from density-assisted tunneling,
(2021-04-27),
arXiv:2104.13394 arXiv:2104.13394 (ID: 720786)
Toggle Abstract
Applying time-periodic modulations is routinely used to control and design synthetic matter in quantum-engineered settings. In lattice systems, this approach is explored to engineer band structures with non-trivial topological properties, but also to generate exotic interaction processes. A prime example is density-assisted tunneling, by which the hopping amplitude of a particle between neighboring sites explicitly depends on their respective occupations. Here, we show how density-assisted tunneling can be tailored in view of simulating the effects of strain in synthetic graphene-type systems. Specifically, we consider a mixture of two atomic species on a honeycomb optical lattice: one species forms a Bose-Einstein condensate in an anisotropic harmonic trap, whose inhomogeneous density profile induces an effective uniaxial strain for the second species through density-assisted tunneling processes. In direct analogy with strained graphene, the second species experiences a pseudo magnetic field, hence exhibiting relativistic Landau levels and the valley Hall effect. Our proposed scheme introduces a unique platform for the investigation of strain-induced gauge fields and their possible interplay with quantum fluctuations and collective excitations.