Forschungsgruppen
Dipolare Quantengase

Die Forschungsgruppe um Francesca Ferlaino beschäftigt sich mit dipolaren Quantenphänomenen, wofür sie stark magnetische Atomspezies verwendet. So konnte die Gruppe im Jahr 2012 das erste... Read more …
Ultrakalte Atome und Quantengase

Die Arbeitsgruppe unter der Leitung von Rudolf Grimm untersucht ultrakalte Teilchensysteme, bestehend aus optisch gespeicherten Quantengasen sehr nahe am absoluten Nullpunkt. Solche Systeme... Read more …
Supraleitende Quantenschaltkreise

Die Forschungsgruppe um Gerhard Kirchmair arbeitet an supraleitenden Schaltkreisen und deren Anwendung in der Quanteninformationsverarbeitung und Quantensimulation. Die quantenmechanischen... Read more …
Quantenoptik und Vielteilchenphysik

Die Forschungsgruppe unter der Leitung von Hannes Pichler beschäftigt sich mit quantenoptischen Systemen, Quanten-Vielteilchenphysik und Quanteninformation. Ziel der Gruppe ist es, die theoretischen Grundlagen... Read more …
Emeritus Forschungsgruppen
Quantenoptik und Spektroskopie

Die Forschungsgruppe um Rainer Blatt untersucht quantenphysikalische Prozesse an Ionen, die in Ionenfallen gespeichert sind. Ziel der Experimente ist es, eine möglichst vollständige Kontrolle über... Read more …
Quantenoptik und Quanteninformation

Peter Zoller's Forschungsarbeiten sind auf den Gebieten der theoretischen Quantenoptik und Atomphysik, der Quanteninformation und der Theorie kondensierter Materie angesiedelt. Im Vordergrund steht... Read more …
Aktuellste Preprints
Fabrication and characterization of vacuum-gap microstrip resonators
arXiv:2503.07431
Measuring full counting statistics in a quantum simulator
arXiv:2501.14424
Show Abstract
In quantum mechanics, the probability distribution function (PDF) and full counting statistics (FCS) play a fundamental role in characterizing the fluctuations of quantum observables, as they encode the complete information about these fluctuations. In this letter, we measure these two quantities in a trapped-ion quantum simulator for the transverse and longitudinal magnetization within a subsystem. We utilize the toolbox of classical shadows to postprocess the measurements performed in random bases. The measurement scheme efficiently allows access to the FCS and PDF of all possible operators on desired choices of subsystems of an extended quantum system.
Fast and Error-Correctable Quantum RAM
arXiv:2503.19172v1
Show Abstract
Mehr Preprints
Quantum devices can process data in a fundamentally different way than classical computers. To leverage this potential, many algorithms require the aid of a quantum Random Access Memory (QRAM), i.e. a module capable of efficiently loading datasets (both classical and quantum) onto the quantum processor. However, a realization of this fundamental building block is still outstanding, since existing proposals require prohibitively many resources for reliable implementations, or are not compatible with current architectures. Moreover, present approaches cannot be scaled-up, as they do not allow for efficient quantum error-correction. Here we develop a QRAM design, that enables fast and robust QRAM calls, naturally allows for fault-tolerant and error-corrected operation, and can be integrated on present hardware. Our proposal employs a special quantum resource state that is consumed during the QRAM call: we discuss how it can be assembled and processed efficiently in a dedicated module, and give detailed blueprints for modern neutral-atom processors. Our work places a long missing, fundamental component of quantum computers within reach of currently available technology; this opens the door to algorithms featuring practical quantum advantage, including search or oracular problems, quantum chemistry and machine learning.
Alle Publikationen