Forschungsgruppen
Dipolare Quantengase

Die Forschungsgruppe um Francesca Ferlaino beschäftigt sich mit dipolaren Quantenphänomenen, wofür sie stark magnetische Atomspezies verwendet. So konnte die Gruppe im Jahr 2012 das erste... Read more …
Ultrakalte Atome und Quantengase

Die Arbeitsgruppe unter der Leitung von Rudolf Grimm untersucht ultrakalte Teilchensysteme, bestehend aus optisch gespeicherten Quantengasen sehr nahe am absoluten Nullpunkt. Solche Systeme... Read more …
Supraleitende Quantenschaltkreise

Die Forschungsgruppe um Gerhard Kirchmair arbeitet an supraleitenden Schaltkreisen und deren Anwendung in der Quanteninformationsverarbeitung und Quantensimulation. Die quantenmechanischen... Read more …
Quantenoptik und Vielteilchenphysik

Die Forschungsgruppe unter der Leitung von Hannes Pichler beschäftigt sich mit quantenoptischen Systemen, Quanten-Vielteilchenphysik und Quanteninformation. Ziel der Gruppe ist es, die theoretischen Grundlagen... Read more …
Emeritus Forschungsgruppen
Quantenoptik und Spektroskopie

Die Forschungsgruppe um Rainer Blatt untersucht quantenphysikalische Prozesse an Ionen, die in Ionenfallen gespeichert sind. Ziel der Experimente ist es, eine möglichst vollständige Kontrolle über... Read more …
Quantenoptik und Quanteninformation

Peter Zoller's Forschungsarbeiten sind auf den Gebieten der theoretischen Quantenoptik und Atomphysik, der Quanteninformation und der Theorie kondensierter Materie angesiedelt. Im Vordergrund steht... Read more …
Aktuellste Preprints
Coherent control over the high-dimensional space of the nuclear spin of alkaline-earth atoms
arXiv:2501.01731
Show Abstract
We demonstrate coherent manipulation of the nuclear degrees of freedom of ultracold ground-state strontium 87 atoms, thus providing a toolkit for fully exploiting the corresponding large Hilbert space as a quantum resource and for quantum simulation experiments with SU(N)-symmetric matter. By controlling the resonance conditions of Raman transitions with a tensor light shift, we can perform rotations within a restricted Hilbert space of two isolated spin states among the 2F+1 = 10 possible states. These manipulations correspond to engineering unitary operations deriving from generators of the SU(N) algebra beyond what can be done by simple spin precession. We present Ramsey interferometers involving an isolated pair of Zeeman states with no measurable decoherence after 3 seconds. We also demonstrate that one can harvest the large spin degrees of freedom as a qudit resource by implementing two interferometer schemes over four states. The first scheme senses in parallel multiple external fields acting on the atoms, and the second scheme simultaneously measures multiple observables of a collective atomic state - including non-commuting ones. Engineering unitary transformations of the large spin driven by other generators than the usual spin-F representation of the SU(2) group offers new possibilities from the point of view of quantum metrology and quantum many-body physics, notably for the quantum simulation of large-spin SU(N)-symmetric quantum magnetism with fermionic alkaline-earth atoms.
Fabrication and characterization of vacuum-gap microstrip resonators
arXiv:2503.07431
Measuring full counting statistics in a quantum simulator
arXiv:2501.14424
Show Abstract
In quantum mechanics, the probability distribution function (PDF) and full counting statistics (FCS) play a fundamental role in characterizing the fluctuations of quantum observables, as they encode the complete information about these fluctuations. In this letter, we measure these two quantities in a trapped-ion quantum simulator for the transverse and longitudinal magnetization within a subsystem. We utilize the toolbox of classical shadows to postprocess the measurements performed in random bases. The measurement scheme efficiently allows access to the FCS and PDF of all possible operators on desired choices of subsystems of an extended quantum system.
Fast and Error-Correctable Quantum RAM
arXiv:2503.19172v1
Show Abstract
Mehr Preprints
Quantum devices can process data in a fundamentally different way than classical computers. To leverage this potential, many algorithms require the aid of a quantum Random Access Memory (QRAM), i.e. a module capable of efficiently loading datasets (both classical and quantum) onto the quantum processor. However, a realization of this fundamental building block is still outstanding, since existing proposals require prohibitively many resources for reliable implementations, or are not compatible with current architectures. Moreover, present approaches cannot be scaled-up, as they do not allow for efficient quantum error-correction. Here we develop a QRAM design, that enables fast and robust QRAM calls, naturally allows for fault-tolerant and error-corrected operation, and can be integrated on present hardware. Our proposal employs a special quantum resource state that is consumed during the QRAM call: we discuss how it can be assembled and processed efficiently in a dedicated module, and give detailed blueprints for modern neutral-atom processors. Our work places a long missing, fundamental component of quantum computers within reach of currently available technology; this opens the door to algorithms featuring practical quantum advantage, including search or oracular problems, quantum chemistry and machine learning.
Alle Publikationen