Forschungsgruppen
BernienLab: Quantenwissenschaft Atom für Atom

Das BernienLab studiert die Quantenphysik, indem sie große Quantensysteme aus einzelnen Atomen in optischen Pinzetten zusammensetzen. Diese Plattform eignet sich ideal sowohl für die Erforschung... Read more …
Ferlaino Lab - Dipolare Quantengase

Die Forschungsgruppe um Francesca Ferlaino beschäftigt sich mit dipolaren Quantenphänomenen, wofür sie stark magnetische Atomspezies verwendet. So konnte die Gruppe im Jahr 2012 das erste... Read more …
Grimm Lab - Ultrakalte Atome und Quantengase

Die Arbeitsgruppe unter der Leitung von Rudolf Grimm untersucht ultrakalte Teilchensysteme, bestehend aus optisch gespeicherten Quantengasen sehr nahe am absoluten Nullpunkt. Solche Systeme... Read more …
Kirchmair Lab - Supraleitende Quantenschaltkreise

Die Forschungsgruppe um Gerhard Kirchmair arbeitet an supraleitenden Schaltkreisen und deren Anwendung in der Quanteninformationsverarbeitung und Quantensimulation. Die quantenmechanischen... Read more …
Pichler Group - Quantum Science Theory

Die Forschungsgruppe unter der Leitung von Hannes Pichler beschäftigt sich mit quantenoptischen Systemen, Quanten-Vielteilchenphysik und Quanteninformation. Ziel der Gruppe ist es, die theoretischen Grundlagen... Read more …
Emeritus Forschungsgruppen
Blatt Lab - Quantenoptik und Spektroskopie

Die Forschungsgruppe um Rainer Blatt untersucht quantenphysikalische Prozesse an Ionen, die in Ionenfallen gespeichert sind. Ziel der Experimente ist es, eine möglichst vollständige Kontrolle über... Read more …
Zoller Group - Quantenoptik und Quanteninformation

Peter Zoller's Forschungsarbeiten sind auf den Gebieten der theoretischen Quantenoptik und Atomphysik, der Quanteninformation und der Theorie kondensierter Materie angesiedelt. Im Vordergrund steht... Read more …
Aktuellste Preprints
Learning mixed quantum states in large-scale experiments
arXiv:2507.12550
Show Abstract
We present and test a protocol to learn the matrix-product operator (MPO) representation of an experimentally prepared quantum state. The protocol takes as an input classical shadows corresponding to local randomized measurements, and outputs the tensors of a MPO which maximizes a suitably-defined fidelity with the experimental state. The tensor optimization is carried out sequentially, similarly to the well-known density matrix renormalization group algorithm. Our approach is provably efficient under certain technical conditions which are expected to be met in short-range correlated states and in typical noisy experimental settings. Under the same conditions, we also provide an efficient scheme to estimate fidelities between the learned and the experimental states. We experimentally demonstrate our protocol by learning entangled quantum states of up to qubits in a superconducting quantum processor. Our method upgrades classical shadows to large-scale quantum computation and simulation experiments.
Field digitization scaling in a Z symmetric model
arXiv:2507.22984
Show Abstract
Mehr Preprints
The simulation of quantum field theories, both classical and quantum, requires regularization of infinitely many degrees of freedom. However, in the context of field digitization (FD) -- a truncation of the local fields to discrete values -- a comprehensive framework to obtain continuum results is currently missing. Here, we propose to analyze FD by interpreting the parameter as a coupling in the renormalization group (RG) sense. As a first example, we investigate the two-dimensional classical -state clock model as a Z FD of the -symmetric -model. Using effective field theory, we employ the RG to derive generalized scaling hypotheses involving the FD parameter , which allows us to relate data obtained for different -regularized models in a procedure that we term (FDS). Using numerical tensor-network calculations at finite bond dimension , we further uncover an unconventional universal crossover around a low-temperature phase transition induced by finite , demonstrating that FDS can be extended to describe the interplay of and . Finally, we analytically prove that our calculations for the 2D classical-statistical Z clock model are directly related to the quantum physics in the ground state of a (2+1)D Z lattice gauge theory which serves as a FD of compact quantum electrodynamics. Our study thus paves the way for applications of FDS to quantum simulations of more complex models in higher spatial dimensions, where it could serve as a tool to analyze the continuum limit of digitized quantum field theories.
Alle Publikationen