Research Groups
Quantum Optics and Spectroscopy
The research group led by Rainer Blatt investigates quantum processes in a system of few ions held in ion traps. The experiments aim at achieving complete control over all quantum degrees of freedom in... Read more …
Dipolar Quantum Gases
The research team led by Francesca Ferlaino focuses on the study of dipolar quantum phenomena, using strongly magnetic atomic species. In 2012, the group has created the first Bose-Einstein... Read more …
Ultracold Atoms and Quantum Gases
The research group led by R. GRIMM investigates ultracold particle systems consisting of optically trapped quantum gases at temperatures close to absolute zero. Because of their superb experimental... Read more …
Superconducting quantum circuits
Gerhard Kirchmair’s research group works on superconducting circuits and their application for quantum computation and simulation. Superconducting Josephson junctions are used to realize the quantum... Read more …
Many-Body Quantum Optics
The research group led by Hannes Pichler studies quantum optical systems, quantum many-body physics and quantum information. The group aims at laying the theoretical foundations for next generation... Read more …
Quantum Optics
Wittgenstein awardee Peter Zoller’s research group studies topics in the fields of theoretical quantum optics and atomic physics as well as quantum information and condensed matter theory. The... Read more …
Most Recent Preprints
Quantum adiabatic optimization with Rydberg arrays: localization phenomena and encoding strategies
arXiv:2411.04645
Show Abstract
We study the quantum dynamics of the encoding scheme proposed in [Nguyen et al., PRX Quantum 4, 010316 (2023)], which encodes optimization problems on graphs with arbitrary connectivity into Rydberg atom arrays. Here, a graph vertex is represented by a wire of atoms, and the (crossing) crossing-with-edge gadget is placed at the intersection of two wires to (de)couple their degrees of freedom and reproduce the graph connectivity. We consider the fundamental geometry of two vertex-wires intersecting via a single gadget and look at minimum gap scaling with system size along adiabatic protocols. We find that both polynomial and exponential scaling are possible and, by means of perturbation theory, we relate the exponential closing of the minimum gap to an unfavorable localization of the ground-state wavefunction. Then, on the QuEra Aquila neutral atom machine, we observe such localization and its effect on the success probability of finding the correct solution to the encoded optimization problem. Finally, we propose possible strategies to avoid this quantum bottleneck, leading to an exponential improvement in the adiabatic performance.
Dark spin-cats as biased qubits
arXiv:2408.04421v1
Show Abstract
We present a biased atomic qubit, universally implementable across all atomic platforms, encoded as a `spin-cat' within ground state Zeeman levels. The key characteristic of our configuration is the coupling of the ground state spin manifold of size Fg≫1 to an excited Zeeman spin manifold of size Fe=Fg−1 using light. This coupling results in eigenstates of the driven atom that include exactly two dark states in the ground state manifold, which are decoupled from light and immune to spontaneous emission from the excited states. These dark states constitute the `spin-cat', leading to the designation `dark spin-cat'. We demonstrate that under strong Rabi drive and for large Fg, the `dark spin-cat' is autonomously stabilized against common noise sources and encodes a qubit with significantly biased noise. Specifically, the bit-flip error rate decreases exponentially with Fg relative to the dephasing rate. We provide an analysis of dark spin-cats, their robustness to noise, and discuss bias-preserving single qubit and entangling gates, exemplified on a Rydberg tweezer platform.
Kerr enhanced optomechanical cooling in the unresolved sideband regime
arXiv:2410.15435
Observation of string breaking on a (2 + 1)D Rydberg quantum simulator
arXiv:2410.16558v1
Show Abstract
More Preprints
Lattice gauge theories (LGTs) describe a broad range of phenomena in condensed matter and particle physics. A prominent example is confinement, responsible for bounding quarks inside hadrons such as protons or neutrons. When quark-antiquark pairs are separated, the energy stored in the string of gluon fields connecting them grows linearly with their distance, until there is enough energy to create new pairs from the vacuum and break the string. While such phenomena are ubiquitous in LGTs, simulating the resulting dynamics is a challenging task. Here, we report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator based on neutral atom arrays. We show that a (2+1)D LGT with dynamical matter can be efficiently implemented when the atoms are placed on a Kagome geometry, with a local U(1) symmetry emerging from the Rydberg blockade, while long-range Rydberg interactions naturally give rise to a linear confining potential for a pair of charges, allowing us to tune both their masses as well as the string tension. We experimentally map out the corresponding phase diagram by adiabatically preparing the ground state of the atom array in the presence of defects, and observe substructure of the confined phase, distinguishing regions dominated by fluctuating strings or by broken string configurations. Finally, by harnessing local control over the atomic detuning, we quench string states and observe string breaking dynamics exhibiting a many-body resonance phenomenon. Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
All Publications