
For quantum computers to be useful in practice, errors must be detected and corrected. In Innsbruck, Austria, a team of experimental physicists has now implemented a universal set of computational operations on fault-tolerant quantum bits for the first time, demonstrating how an algorithm can be programmed on a quantum computer so that errors do not spoil the result.

In a new study, investigations led by Francesca Ferlaino and Russell Bisset show how to cool an atomic gas into a supersolid with a circular, 2D shape. The method will allow researchers to further study these exotic states of matter and search for features such as turbulent vortices.

A quantum system consisting of only 51 charged atoms can assume more than two quadrillion different states. Calculating the system's behavior is a piece of cake for a quantum simulator. A research team from the University of Innsbruck and the Technical University of Munich (TUM) has now shown how these systems can be described using equations from the 18th century.

Francesca Ferlaino, professor at the University of Innsbruck, Austria, and scientific director at the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences receives an ERC Advanced Grant, the highest European funding for established scientists in basic research. She will receive up to 2.5 million euros in research funding. For Ferlaino, it is already the third ERC grant after a Starting Grant (2010) and a Consolidator Grant (2016).